Mercurial > hg > octave-lyh
view scripts/plot/pareto.m @ 17194:c954b0a396a2
comet.m: Speed up animation by using low-level graphic commands.
* scripts/plot/comet.m: Speed up animation by using low-level graphic
commands.
author | Rik <rik@octave.org> |
---|---|
date | Mon, 05 Aug 2013 15:44:02 -0700 |
parents | 6e8c621c3496 |
children | bc924baa2c4e |
line wrap: on
line source
## Copyright (C) 2007-2012 David Bateman ## Copyright (C) 2003 Alberto Terruzzi ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {} pareto (@var{y}) ## @deftypefnx {Function File} {} pareto (@var{y}, @var{x}) ## @deftypefnx {Function File} {} pareto (@var{hax}, @dots{}) ## @deftypefnx {Function File} {@var{h} =} pareto (@dots{}) ## Draw a Pareto chart. ## ## A Pareto chart is a bar graph that arranges information in such a way ## that priorities for process improvement can be established; It organizes ## and displays information to show the relative importance of data. The chart ## is similar to the histogram or bar chart, except that the bars are arranged ## in decreasing magnitude from left to right along the x-axis. ## ## The fundamental idea (Pareto principle) behind the use of Pareto ## diagrams is that the majority of an effect is due to a small subset of the ## causes. For quality improvement, the first few contributing causes ## (leftmost bars as presented on the diagram) to a problem usually account for ## the majority of the result. Thus, targeting these "major causes" for ## elimination results in the most cost-effective improvement scheme. ## ## Typically only the magnitude data @var{y} is present in which case ## @var{x} is taken to be the range @code{1 : length (@var{y})}. If @var{x} ## is given it may be a string array, a cell array of strings, or a numerical ## vector. ## ## If the first argument @var{hax} is an axes handle, then plot into this axis, ## rather than the current axes returned by @code{gca}. ## ## The optional return value @var{h} is a 2-element vector with a graphics ## handle for the created bar plot and a second handle for the created line ## plot. ## ## An example of the use of @code{pareto} is ## ## @example ## @group ## Cheese = @{"Cheddar", "Swiss", "Camembert", ... ## "Munster", "Stilton", "Blue"@}; ## Sold = [105, 30, 70, 10, 15, 20]; ## pareto (Sold, Cheese); ## @end group ## @end example ## @seealso{bar, barh, hist, pie, plot} ## @end deftypefn function h = pareto (varargin) [hax, varargin, nargin] = __plt_get_axis_arg__ ("pareto", varargin{:}); if (nargin != 1 && nargin != 2) print_usage (); endif x = varargin {1}(:).'; if (nargin == 2) y = varargin {2}(:).'; if (! iscell (y)) if (ischar (y)) y = cellstr (y); else y = cellfun ("num2str", num2cell (y), "uniformoutput", false); endif endif else y = cellfun ("int2str", num2cell (1 : numel (x)), "uniformoutput", false); endif [x, idx] = sort (x, "descend"); y = y(idx); cdf = cumsum (x); maxcdf = max (cdf); cdf = cdf ./ maxcdf; cdf95 = cdf - 0.95; idx95 = find (sign (cdf95(1:end-1)) != sign (cdf95(2:end)))(1); if (isempty (hax)) [ax, hbar, hline] = plotyy (1 : idx95, x (1 : idx95), 1 : length (cdf), 100 .* cdf, @bar, @plot); else [ax, hbar, hline] = plotyy (hax, 1 : idx95, x (1 : idx95), 1 : length (cdf), 100 .* cdf, @bar, @plot); endif axis (ax(1), [1 - 0.6, idx95 + 0.6, 0, maxcdf]); axis (ax(2), [1 - 0.6, idx95 + 0.6, 0, 100]); set (ax(2), "ytick", [0, 20, 40, 60, 80, 100], "yticklabel", {"0%", "20%", "40%", "60%", "80%", "100%"}); set (ax(1), "xtick", 1:idx95, "xticklabel", y(1:idx95)); set (ax(2), "xtick", 1:idx95, "xticklabel", y(1:idx95)); if (nargout > 0) h = [hbar; hline]; endif endfunction %!demo %! clf; %! colormap (jet (64)); %! Cheese = {'Cheddar', 'Swiss', 'Camembert', 'Munster', 'Stilton', 'Blue'}; %! Sold = [105, 30, 70, 10, 15, 20]; %! pareto (Sold, Cheese); %!demo %! clf; %! % Suppose that we want establish which products makes 80% of turnover. %! Codes = {'AB4','BD7','CF8','CC5','AD11','BB5','BB3','AD8','DF3','DE7'}; %! Value = [2.35 7.9 2.45 1.1 0.15 13.45 5.4 2.05 0.85 1.65]'; %! SoldUnits = [54723 41114 16939 1576091 168000 687197 120222 168195, ... %! 1084118 55576]'; %! pareto (Value.*SoldUnits, Codes);