Mercurial > hg > octave-lyh
view scripts/sparse/sprandsym.m @ 14373:d00900b3dc4b
doc: Use two spaces at start of sentence.
* ndgrid.m, uiwait.m, sprandn.m, sprandsym.m, quantile.m:
Use two spaces at start of sentence.
author | Rik <octave@nomad.inbox5.com> |
---|---|
date | Thu, 16 Feb 2012 15:44:42 -0800 |
parents | f3d52523cde1 |
children | 86854d032a37 |
line wrap: on
line source
## Copyright (C) 2004-2012 David Bateman and Andy Adler ## Copyright (C) 2012 Jordi Gutiérrez Hermoso ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {} sprandsym (@var{n}, @var{d}) ## @deftypefnx {Function File} {} sprandsym (@var{s}) ## Generate a symmetric random sparse matrix. The size of the matrix will be ## @var{n} by @var{n}, with a density of values given by @var{d}. ## @var{d} should be between 0 and 1. Values will be normally ## distributed with mean of zero and variance 1. ## ## If called with a single matrix argument, a random sparse matrix is ## generated wherever the matrix @var{S} is non-zero in its lower ## triangular part. ## @seealso{sprand, sprandn} ## @end deftypefn function S = sprandsym (n, d) if (nargin != 1 && nargin != 2) print_usage (); endif if (nargin == 1) [i, j] = find (tril (n)); [nr, nc] = size (n); S = sparse (i, j, randn (size (i)), nr, nc); S = S + tril (S, -1)'; return; endif if (!(isscalar (n) && n == fix (n) && n > 0)) error ("sprandsym: N must be an integer greater than 0"); endif if (d < 0 || d > 1) error ("sprandsym: density D must be between 0 and 1"); endif ## Actual number of nonzero entries k = round (n^2*d); ## Diagonal nonzero entries, same parity as k r = pick_rand_diag (n, k); ## Off diagonal nonzero entries m = (k - r)/2; ondiag = randperm (n, r); offdiag = randperm (n*(n - 1)/2, m); ## Row index i = lookup (cumsum (0:n), offdiag - 1) + 1; ## Column index j = offdiag - (i - 1).*(i - 2)/2; diagvals = randn (1, r); offdiagvals = randn (1, m); S = sparse ([ondiag, i, j], [ondiag, j, i], [diagvals, offdiagvals, offdiagvals], n, n); endfunction function r = pick_rand_diag (n, k) ## Pick a random number R of entries for the diagonal of a sparse NxN ## symmetric square matrix with exactly K nonzero entries, ensuring ## that this R is chosen uniformly over all such matrices. ## ## Let D be the number of diagonal entries and M the number of ## off-diagonal entries. Then K = D + 2*M. Let A = N*(N-1)/2 be the ## number of available entries in the upper triangle of the matrix. ## Then, by a simple counting argument, there is a total of ## ## T = nchoosek (N, D) * nchoosek (A, M) ## ## symmetric NxN matrices with a total of K nonzero entries and D on ## the diagonal. Letting D range from mod (K,2) through min (N,K), and ## dividing by this sum, we obtain the probability P for D to be each ## of those values. ## ## However, we cannot use this form for computation, as the binomial ## coefficients become unmanageably large. Instead, we use the ## successive quotients Q(i) = T(i+1)/T(i), which we easily compute to ## be ## ## (N - D)*(N - D - 1)*M ## Q = ------------------------------- ## (D + 2)*(D + 1)*(A - M + 1) ## ## Then, after prepending 1, the cumprod of these quotients is ## ## C = [ T(1)/T(1), T(2)/T(1), T(3)/T(1), ..., T(N)/T(1) ] ## ## Their sum is thus S = sum (T)/T(1), and then C(i)/S is the desired ## probability P(i) for i=1:N. The cumsum will finally give the ## distribution function for computing the random number of entries on ## the diagonal R. ## ## Thanks to Zsbán Ambrus <ambrus@math.bme.hu> for most of the ideas ## of the implementation here, especially how to do the computation ## numerically to avoid overflow. ## Degenerate case if k == 1 r = 1; return endif ## Compute the stuff described above a = n*(n - 1)/2; d = [mod(k,2):2:min(n,k)-2]; m = (k - d)/2; q = (n - d).*(n - d - 1).*m ./ (d + 2)./(d + 1)./(a - m + 1); ## Slight modification from discussion above: pivot around the max in ## order to avoid overflow (underflow is fine, just means effectively ## zero probabilities). [~, midx] = max (cumsum (log (q))) ; midx++; lc = fliplr (cumprod (1./q(midx-1:-1:1))); rc = cumprod (q(midx:end)); ## Now c = t(i)/t(midx), so c > 1 == []. c = [lc, 1, rc]; s = sum (c); p = c/s; ## Add final d d(end+1) = d(end) + 2; ## Pick a random r using this distribution r = d(sum (cumsum (p) < rand) + 1); endfunction %!test %! s = sprandsym (10, 0.1); %! assert (issparse (s)); %! assert (issymmetric (s)); %! assert (size (s), [10, 10]); %! assert (nnz (s) / numel (s), 0.1, .01); %% Test 1-input calling form %!test %! s = sprandsym (sparse ([1 2 3], [3 2 3], [2 2 2])); %! [i, j] = find (s); %! assert (sort (i), [2 3]'); %! assert (sort (j), [2 3]'); %% Test input validation %!error sprandsym () %!error sprandsym (1, 2, 3) %!error sprandsym (ones (3), 0.5) %!error sprandsym (3.5, 0.5) %!error sprandsym (0, 0.5) %!error sprandsym (3, -1) %!error sprandsym (3, 2)