Mercurial > hg > octave-lyh
view scripts/signal/arch_rnd.m @ 3457:e031284eea27
[project @ 2000-01-19 08:49:56 by jwe]
author | jwe |
---|---|
date | Wed, 19 Jan 2000 08:50:14 +0000 |
parents | 858695b3ed62 |
children | 3e3e14ad5149 |
line wrap: on
line source
## Copyright (C) 1995, 1996, 1997 Kurt Hornik ## ## This program is free software; you can redistribute it and/or modify ## it under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 2, or (at your option) ## any later version. ## ## This program is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this file. If not, write to the Free Software Foundation, ## 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. ## -*- texinfo -*- ## @deftypefn {Function File} {@var{y} =} arch_rnd (@var{a}, @var{b}, @var{t}) ## Simulate an ARCH sequence, @var{y}, of length @var{t} with AR ## coefficients @var{b} and CH coefficients @var{a}. I.e., the result ## follows the model ## ## @example ## y(t) = b(1) + b(2) * y(t-1) + ... + b(lb) * y(t-lb+1) + e(t), ## @end example ## ## @noindent ## where e(t), given @var{y} up to time @var{t}-1, is @var{N}(0, ## @var{h}(@var{t})), with ## ## @example ## h(t) = a(1) + a(2) * e(t-1)^2 + ... + a(la) * e(t-la+1)^2 ## @end example ## @end deftypefn ## Author: KH <Kurt.Hornik@ci.tuwien.ac.at> ## Description: Simulate an ARCH process function y = arch_rnd (a, b, T) if (nargin != 3) usage ("arch_rnd (a, b, T)"); endif if (! ((min (size (a)) == 1) && (min (size (b)) == 1))) error ("arch_rnd: a and b must both be scalars or vectors"); endif if (! (is_scalar (T) && (T > 0) && (rem (T, 1) == 0))) error ("arch_rnd: T must be a positive integer"); endif if (! (a(1) > 0)) error ("arch_rnd: a(1) must be positive"); endif ## perhaps add a test for the roots of a(z) here ... la = length (a); a = reshape (a, 1, la); if (la == 1) a = [a, 0]; la = la + 1; endif lb = length (b); b = reshape (b, 1, lb); if (lb == 1) b = [b, 0]; lb = lb + 1; endif M = max([la, lb]); e = zeros (T, 1); h = zeros (T, 1); y = zeros (T, 1); h(1) = a(1); e(1) = sqrt (h(1)) * randn; y(1) = b(1) + e(1); for t= 2 : M; ta = min ([t, la]); h(t) = a(1) + a(2:ta) * e(t-1:t-ta+1).^2; e(t) = sqrt (h(t)) * randn; tb = min ([t, lb]); y(t) = b(1) + b(2:tb) * y(t-1:t-tb+1) + e(t); endfor if (T > M) for t = M+1 : T; h(t) = a(1) + a(2:la) * e(t-1:t-la+1).^2; e(t) = sqrt (h(t)) * randn; y(t) = b(1) + b(2:lb) * y(t-1:t-tb+1) + e(t); endfor endif y = y(1:T); endfunction