Mercurial > hg > octave-lyh
view scripts/general/interp1.m @ 14526:e12945668746
doc: Stop constant rebuild of spline images in txt format.
* splineimages.m: Fix typo in output filename generation for txt format.
author | Rik <octave@nomad.inbox5.com> |
---|---|
date | Wed, 04 Apr 2012 19:28:16 -0700 |
parents | 7ce925166af6 |
children | 5d3a684236b0 |
line wrap: on
line source
## Copyright (C) 2000-2012 Paul Kienzle ## Copyright (C) 2009 VZLU Prague ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {@var{yi} =} interp1 (@var{x}, @var{y}, @var{xi}) ## @deftypefnx {Function File} {@var{yi} =} interp1 (@var{y}, @var{xi}) ## @deftypefnx {Function File} {@var{yi} =} interp1 (@dots{}, @var{method}) ## @deftypefnx {Function File} {@var{yi} =} interp1 (@dots{}, @var{extrap}) ## @deftypefnx {Function File} {@var{pp} =} interp1 (@dots{}, "pp") ## ## One-dimensional interpolation. Interpolate @var{y}, defined at the ## points @var{x}, at the points @var{xi}. The sample points @var{x} ## must be monotonic. If not specified, @var{x} is taken to be the ## indices of @var{y}. If @var{y} is an array, treat the columns ## of @var{y} separately. ## ## Method is one of: ## ## @table @asis ## @item "nearest" ## Return the nearest neighbor. ## ## @item "linear" ## Linear interpolation from nearest neighbors ## ## @item "pchip" ## Piecewise cubic Hermite interpolating polynomial ## ## @item "cubic" ## Cubic interpolation (same as @code{pchip}) ## ## @item "spline" ## Cubic spline interpolation---smooth first and second derivatives ## throughout the curve ## @end table ## ## Appending '*' to the start of the above method forces @code{interp1} ## to assume that @var{x} is uniformly spaced, and only @code{@var{x} ## (1)} and @code{@var{x} (2)} are referenced. This is usually faster, ## and is never slower. The default method is "linear". ## ## If @var{extrap} is the string "extrap", then extrapolate values beyond ## the endpoints. If @var{extrap} is a number, replace values beyond the ## endpoints with that number. If @var{extrap} is missing, assume NA. ## ## If the string argument "pp" is specified, then @var{xi} should not be ## supplied and @code{interp1} returns the piecewise polynomial that ## can later be used with @code{ppval} to evaluate the interpolation. ## There is an equivalence, such that @code{ppval (interp1 (@var{x}, ## @var{y}, @var{method}, "pp"), @var{xi}) == interp1 (@var{x}, @var{y}, ## @var{xi}, @var{method}, "extrap")}. ## ## Duplicate points in @var{x} specify a discontinuous interpolant. There ## should be at most 2 consecutive points with the same value. ## The discontinuous interpolant is right-continuous if @var{x} is increasing, ## left-continuous if it is decreasing. ## Discontinuities are (currently) only allowed for "nearest" and "linear" ## methods; in all other cases, @var{x} must be strictly monotonic. ## ## An example of the use of @code{interp1} is ## ## @example ## @group ## xf = [0:0.05:10]; ## yf = sin (2*pi*xf/5); ## xp = [0:10]; ## yp = sin (2*pi*xp/5); ## lin = interp1 (xp, yp, xf); ## spl = interp1 (xp, yp, xf, "spline"); ## cub = interp1 (xp, yp, xf, "cubic"); ## near = interp1 (xp, yp, xf, "nearest"); ## plot (xf, yf, "r", xf, lin, "g", xf, spl, "b", ## xf, cub, "c", xf, near, "m", xp, yp, "r*"); ## legend ("original", "linear", "spline", "cubic", "nearest"); ## @end group ## @end example ## ## @seealso{interpft} ## @end deftypefn ## Author: Paul Kienzle ## Date: 2000-03-25 ## added 'nearest' as suggested by Kai Habel ## 2000-07-17 Paul Kienzle ## added '*' methods and matrix y ## check for proper table lengths ## 2002-01-23 Paul Kienzle ## fixed extrapolation function yi = interp1 (x, y, varargin) if (nargin < 2 || nargin > 6) print_usage (); endif method = "linear"; extrap = NA; xi = []; ispp = false; firstnumeric = true; if (nargin > 2) for i = 1:length (varargin) arg = varargin{i}; if (ischar (arg)) arg = tolower (arg); if (strcmp ("extrap", arg)) extrap = "extrap"; elseif (strcmp ("pp", arg)) ispp = true; else method = arg; endif else if (firstnumeric) xi = arg; firstnumeric = false; else extrap = arg; endif endif endfor endif if (isempty (xi) && firstnumeric && ! ispp) xi = y; y = x; x = 1:numel(y); endif ## reshape matrices for convenience x = x(:); nx = rows (x); szx = size (xi); if (isvector (y)) y = y(:); endif szy = size (y); y = y(:,:); [ny, nc] = size (y); xi = xi(:); ## determine sizes if (nx < 2 || ny < 2) error ("interp1: table too short"); endif ## check whether x is sorted; sort if not. if (! issorted (x, "either")) [x, p] = sort (x); y = y(p,:); endif starmethod = method(1) == "*"; if (starmethod) dx = x(2) - x(1); else jumps = x(1:nx-1) == x(2:nx); have_jumps = any (jumps); if (have_jumps) if (any (strcmp (method, {"nearest", "linear"}))) if (any (jumps(1:nx-2) & jumps(2:nx-1))) warning ("interp1: extra points in discontinuities"); endif else error ("interp1: discontinuities not supported for method %s", method); endif endif endif ## Proceed with interpolating by all methods. switch (method) case "nearest" pp = mkpp ([x(1); (x(1:nx-1)+x(2:nx))/2; x(nx)], shiftdim (y, 1), szy(2:end)); pp.orient = "first"; if (ispp) yi = pp; else yi = ppval (pp, reshape (xi, szx)); endif case "*nearest" pp = mkpp ([x(1), x(1)+[0.5:(nx-1)]*dx, x(nx)], shiftdim (y, 1), szy(2:end)); pp.orient = "first"; if (ispp) yi = pp; else yi = ppval(pp, reshape (xi, szx)); endif case "linear" dy = diff (y); dx = diff (x); dx = repmat (dx, [1 size(dy)(2:end)]); coefs = [(dy./dx).'(:), y(1:nx-1, :).'(:)]; xx = x; if (have_jumps) ## Omit zero-size intervals. coefs(jumps, :) = []; xx(jumps) = []; endif pp = mkpp (xx, coefs, szy(2:end)); pp.orient = "first"; if (ispp) yi = pp; else yi = ppval(pp, reshape (xi, szx)); endif case "*linear" dy = diff (y); coefs = [(dy/dx).'(:), y(1:nx-1, :).'(:)]; pp = mkpp (x, coefs, szy(2:end)); pp.orient = "first"; if (ispp) yi = pp; else yi = ppval(pp, reshape (xi, szx)); endif case {"pchip", "*pchip", "cubic", "*cubic"} if (nx == 2 || starmethod) x = linspace (x(1), x(nx), ny); endif if (ispp) y = shiftdim (reshape (y, szy), 1); yi = pchip (x, y); yi.orient = "first"; else y = shiftdim (y, 1); yi = pchip (x, y, reshape (xi, szx)); if (! isvector (y)) yi = shiftdim (yi, 1); endif endif case {"spline", "*spline"} if (nx == 2 || starmethod) x = linspace(x(1), x(nx), ny); endif if (ispp) y = shiftdim (reshape (y, szy), 1); yi = spline (x, y); yi.orient = "first"; else y = shiftdim (y, 1); yi = spline (x, y, reshape (xi, szx)); if (! isvector (y)) yi = shiftdim (yi, 1); endif endif otherwise error ("interp1: invalid method '%s'", method); endswitch if (! ispp) if (! ischar (extrap)) ## determine which values are out of range and set them to extrap, ## unless extrap == "extrap". minx = min (x(1), x(nx)); maxx = max (x(1), x(nx)); outliers = xi < minx | ! (xi <= maxx); # this catches even NaNs if (size_equal (outliers, yi)) yi(outliers) = extrap; yi = reshape (yi, szx); elseif (!isvector (yi)) yi(outliers, :) = extrap; else yi(outliers.') = extrap; endif endif endif endfunction %!demo %! clf; %! xf = 0:0.05:10; yf = sin (2*pi*xf/5); %! xp = 0:10; yp = sin (2*pi*xp/5); %! lin = interp1 (xp,yp,xf, "linear"); %! spl = interp1 (xp,yp,xf, "spline"); %! cub = interp1 (xp,yp,xf, "pchip"); %! near= interp1 (xp,yp,xf, "nearest"); %! plot (xf,yf,"r",xf,near,"g",xf,lin,"b",xf,cub,"c",xf,spl,"m",xp,yp,"r*"); %! legend ("original", "nearest", "linear", "pchip", "spline"); %! %-------------------------------------------------------- %! % confirm that interpolated function matches the original %!demo %! clf; %! xf = 0:0.05:10; yf = sin (2*pi*xf/5); %! xp = 0:10; yp = sin (2*pi*xp/5); %! lin = interp1 (xp,yp,xf, "*linear"); %! spl = interp1 (xp,yp,xf, "*spline"); %! cub = interp1 (xp,yp,xf, "*cubic"); %! near= interp1 (xp,yp,xf, "*nearest"); %! plot (xf,yf,"r",xf,near,"g",xf,lin,"b",xf,cub,"c",xf,spl,"m",xp,yp,"r*"); %! legend ("*original", "*nearest", "*linear", "*cubic", "*spline"); %! %-------------------------------------------------------- %! % confirm that interpolated function matches the original %!demo %! clf; %! t = 0 : 0.3 : pi; dt = t(2)-t(1); %! n = length (t); k = 100; dti = dt*n/k; %! ti = t(1) + [0 : k-1]*dti; %! y = sin (4*t + 0.3) .* cos (3*t - 0.1); %! ddyc = diff (diff (interp1 (t,y,ti, "cubic")) ./dti)./dti; %! ddys = diff (diff (interp1 (t,y,ti, "spline"))./dti)./dti; %! ddyp = diff (diff (interp1 (t,y,ti, "pchip")) ./dti)./dti; %! plot (ti(2:end-1),ddyc,'g+', ti(2:end-1),ddys,'b*', ti(2:end-1),ddyp,'c^'); %! legend ("cubic", "spline", "pchip"); %! title ("Second derivative of interpolated 'sin (4*t + 0.3) .* cos (3*t - 0.1)'"); %!demo %! clf; %! xf = 0:0.05:10; yf = sin (2*pi*xf/5) - (xf >= 5); %! xp = [0:.5:4.5,4.99,5:.5:10]; yp = sin (2*pi*xp/5) - (xp >= 5); %! lin = interp1 (xp,yp,xf, "linear"); %! near= interp1 (xp,yp,xf, "nearest"); %! plot (xf,yf,"r", xf,near,"g", xf,lin,"b", xp,yp,"r*"); %! legend ("original", "nearest", "linear"); %! %-------------------------------------------------------- %! % confirm that interpolated function matches the original ##FIXME: add test for n-d arguments here ## For each type of interpolated test, confirm that the interpolated ## value at the knots match the values at the knots. Points away ## from the knots are requested, but only "nearest" and "linear" ## confirm they are the correct values. %!shared xp, yp, xi, style %! xp = 0:2:10; %! yp = sin (2*pi*xp/5); %! xi = [-1, 0, 2.2, 4, 6.6, 10, 11]; ## The following BLOCK/ENDBLOCK section is repeated for each style ## nearest, linear, cubic, spline, pchip ## The test for ppval of cubic has looser tolerance, but otherwise ## the tests are identical. ## Note that the block checks style and *style; if you add more tests ## be sure to add them to both sections of each block. One test, ## style vs. *style, occurs only in the first section. ## There is an ENDBLOCKTEST after the final block %!test style = "nearest"; ## BLOCK %!assert (interp1 (xp, yp, [min(xp)-1, max(xp)+1],style), [NA, NA]) %!assert (interp1 (xp,yp,xp,style), yp, 100*eps) %!assert (interp1 (xp,yp,xp',style), yp', 100*eps) %!assert (interp1 (xp',yp',xp',style), yp', 100*eps) %!assert (interp1 (xp',yp',xp,style), yp, 100*eps) %!assert (isempty (interp1 (xp',yp',[],style))) %!assert (isempty (interp1 (xp,yp,[],style))) %!assert (interp1 (xp,[yp',yp'],xi(:),style),... %! [interp1(xp,yp,xi(:),style),interp1(xp,yp,xi(:),style)]) %!assert (interp1 (xp,yp,xi,style),... %! interp1 (fliplr (xp),fliplr (yp),xi,style),100*eps) %!assert (ppval (interp1 (xp,yp,style,"pp"),xi), %! interp1 (xp,yp,xi,style,"extrap"),10*eps) %!error interp1 (1,1,1, style) %!assert (interp1 (xp,[yp',yp'],xi,style), %! interp1 (xp,[yp',yp'],xi,["*",style]),100*eps) %!test style = ["*",style]; %!assert (interp1 (xp, yp, [min(xp)-1, max(xp)+1],style), [NA, NA]) %!assert (interp1 (xp,yp,xp,style), yp, 100*eps) %!assert (interp1 (xp,yp,xp',style), yp', 100*eps) %!assert (interp1 (xp',yp',xp',style), yp', 100*eps) %!assert (interp1 (xp',yp',xp,style), yp, 100*eps) %!assert (isempty (interp1 (xp',yp',[],style))) %!assert (isempty (interp1 (xp,yp,[],style))) %!assert (interp1 (xp,[yp',yp'],xi(:),style),... %! [interp1(xp,yp,xi(:),style),interp1(xp,yp,xi(:),style)]) %!assert (interp1 (xp,yp,xi,style),... %! interp1 (fliplr (xp),fliplr (yp),xi,style),100*eps) %!assert (ppval (interp1 (xp,yp,style,"pp"),xi), %! interp1 (xp,yp,xi,style,"extrap"),10*eps) %!error interp1 (1,1,1, style) ## ENDBLOCK %!test style = "linear"; ## BLOCK %!assert (interp1 (xp, yp, [min(xp)-1, max(xp)+1],style), [NA, NA]) %!assert (interp1 (xp,yp,xp,style), yp, 100*eps) %!assert (interp1 (xp,yp,xp',style), yp', 100*eps) %!assert (interp1 (xp',yp',xp',style), yp', 100*eps) %!assert (interp1 (xp',yp',xp,style), yp, 100*eps) %!assert (isempty (interp1 (xp',yp',[],style))) %!assert (isempty (interp1 (xp,yp,[],style))) %!assert (interp1 (xp,[yp',yp'],xi(:),style),... %! [interp1(xp,yp,xi(:),style),interp1(xp,yp,xi(:),style)]) %!assert (interp1 (xp,yp,xi,style),... %! interp1 (fliplr (xp),fliplr (yp),xi,style),100*eps) %!assert (ppval (interp1 (xp,yp,style,"pp"),xi), %! interp1 (xp,yp,xi,style,"extrap"),10*eps) %!error interp1 (1,1,1, style) %!assert (interp1 (xp,[yp',yp'],xi,style), %! interp1 (xp,[yp',yp'],xi,["*",style]),100*eps) %!test style = ['*',style]; %!assert (interp1 (xp, yp, [min(xp)-1, max(xp)+1],style), [NA, NA]) %!assert (interp1 (xp,yp,xp,style), yp, 100*eps) %!assert (interp1 (xp,yp,xp',style), yp', 100*eps) %!assert (interp1 (xp',yp',xp',style), yp', 100*eps) %!assert (interp1 (xp',yp',xp,style), yp, 100*eps) %!assert (isempty (interp1 (xp',yp',[],style))) %!assert (isempty (interp1 (xp,yp,[],style))) %!assert (interp1 (xp,[yp',yp'],xi(:),style),... %! [interp1(xp,yp,xi(:),style),interp1(xp,yp,xi(:),style)]) %!assert (interp1 (xp,yp,xi,style),... %! interp1 (fliplr (xp),fliplr (yp),xi,style),100*eps) %!assert (ppval (interp1 (xp,yp,style,"pp"),xi), %! interp1 (xp,yp,xi,style,"extrap"),10*eps) %!error interp1 (1,1,1, style) ## ENDBLOCK %!test style = "cubic"; ## BLOCK %!assert (interp1 (xp, yp, [min(xp)-1, max(xp)+1],style), [NA, NA]) %!assert (interp1 (xp,yp,xp,style), yp, 100*eps) %!assert (interp1 (xp,yp,xp',style), yp', 100*eps) %!assert (interp1 (xp',yp',xp',style), yp', 100*eps) %!assert (interp1 (xp',yp',xp,style), yp, 100*eps) %!assert (isempty (interp1 (xp',yp',[],style))) %!assert (isempty (interp1 (xp,yp,[],style))) %!assert (interp1 (xp,[yp',yp'],xi(:),style),... %! [interp1(xp,yp,xi(:),style),interp1(xp,yp,xi(:),style)]) %!assert (interp1 (xp,yp,xi,style),... %! interp1 (fliplr (xp),fliplr (yp),xi,style),100*eps) %!assert (ppval (interp1 (xp,yp,style,"pp"),xi), %! interp1 (xp,yp,xi,style,"extrap"),100*eps) %!error interp1 (1,1,1, style) %!assert (interp1 (xp,[yp',yp'],xi,style), %! interp1 (xp,[yp',yp'],xi,["*",style]),100*eps) %!test style = ["*",style]; %!assert (interp1 (xp, yp, [min(xp)-1, max(xp)+1],style), [NA, NA]) %!assert (interp1 (xp,yp,xp,style), yp, 100*eps) %!assert (interp1 (xp,yp,xp',style), yp', 100*eps) %!assert (interp1 (xp',yp',xp',style), yp', 100*eps) %!assert (interp1 (xp',yp',xp,style), yp, 100*eps) %!assert (isempty (interp1 (xp',yp',[],style))) %!assert (isempty (interp1 (xp,yp,[],style))) %!assert (interp1 (xp,[yp',yp'],xi(:),style),... %! [interp1(xp,yp,xi(:),style),interp1(xp,yp,xi(:),style)]) %!assert (interp1 (xp,yp,xi,style),... %! interp1 (fliplr (xp),fliplr (yp),xi,style),100*eps) %!assert (ppval (interp1 (xp,yp,style,"pp"),xi), %! interp1 (xp,yp,xi,style,"extrap"),100*eps) %!error interp1 (1,1,1, style) ## ENDBLOCK %!test style = "pchip"; ## BLOCK %!assert (interp1 (xp, yp, [min(xp)-1, max(xp)+1],style), [NA, NA]) %!assert (interp1 (xp,yp,xp,style), yp, 100*eps) %!assert (interp1 (xp,yp,xp',style), yp', 100*eps) %!assert (interp1 (xp',yp',xp',style), yp', 100*eps) %!assert (interp1 (xp',yp',xp,style), yp, 100*eps) %!assert (isempty (interp1 (xp',yp',[],style))) %!assert (isempty (interp1 (xp,yp,[],style))) %!assert (interp1 (xp,[yp',yp'],xi(:),style),... %! [interp1(xp,yp,xi(:),style),interp1(xp,yp,xi(:),style)]) %!assert (interp1 (xp,yp,xi,style),... %! interp1 (fliplr (xp),fliplr (yp),xi,style),100*eps) %!assert (ppval (interp1 (xp,yp,style,"pp"),xi), %! interp1 (xp,yp,xi,style,"extrap"),10*eps) %!error interp1 (1,1,1, style) %!assert (interp1 (xp,[yp',yp'],xi,style), %! interp1 (xp,[yp',yp'],xi,["*",style]),100*eps) %!test style = ["*",style]; %!assert (interp1 (xp, yp, [min(xp)-1, max(xp)+1],style), [NA, NA]) %!assert (interp1 (xp,yp,xp,style), yp, 100*eps) %!assert (interp1 (xp,yp,xp',style), yp', 100*eps) %!assert (interp1 (xp',yp',xp',style), yp', 100*eps) %!assert (interp1 (xp',yp',xp,style), yp, 100*eps) %!assert (isempty (interp1 (xp',yp',[],style))) %!assert (isempty (interp1 (xp,yp,[],style))) %!assert (interp1 (xp,[yp',yp'],xi(:),style),... %! [interp1(xp,yp,xi(:),style),interp1(xp,yp,xi(:),style)]) %!assert (interp1 (xp,yp,xi,style),... %! interp1 (fliplr (xp),fliplr (yp),xi,style),100*eps) %!assert (ppval (interp1 (xp,yp,style,"pp"),xi), %! interp1 (xp,yp,xi,style,"extrap"),10*eps) %!error interp1 (1,1,1, style) ## ENDBLOCK %!test style = "spline"; ## BLOCK %!assert (interp1 (xp, yp, [min(xp)-1, max(xp)+1],style), [NA, NA]) %!assert (interp1 (xp,yp,xp,style), yp, 100*eps) %!assert (interp1 (xp,yp,xp',style), yp', 100*eps) %!assert (interp1 (xp',yp',xp',style), yp', 100*eps) %!assert (interp1 (xp',yp',xp,style), yp, 100*eps) %!assert (isempty (interp1 (xp',yp',[],style))) %!assert (isempty (interp1 (xp,yp,[],style))) %!assert (interp1 (xp,[yp',yp'],xi(:),style),... %! [interp1(xp,yp,xi(:),style),interp1(xp,yp,xi(:),style)]) %!assert (interp1 (xp,yp,xi,style),... %! interp1 (fliplr (xp),fliplr (yp),xi,style),100*eps) %!assert (ppval (interp1 (xp,yp,style,"pp"),xi), %! interp1 (xp,yp,xi,style,"extrap"),10*eps) %!error interp1 (1,1,1, style) %!assert (interp1 (xp,[yp',yp'],xi,style), %! interp1 (xp,[yp',yp'],xi,["*",style]),100*eps) %!test style = ["*",style]; %!assert (interp1 (xp, yp, [min(xp)-1, max(xp)+1],style), [NA, NA]) %!assert (interp1 (xp,yp,xp,style), yp, 100*eps) %!assert (interp1 (xp,yp,xp',style), yp', 100*eps) %!assert (interp1 (xp',yp',xp',style), yp', 100*eps) %!assert (interp1 (xp',yp',xp,style), yp, 100*eps) %!assert (isempty (interp1 (xp',yp',[],style))) %!assert (isempty (interp1 (xp,yp,[],style))) %!assert (interp1 (xp,[yp',yp'],xi(:),style),... %! [interp1(xp,yp,xi(:),style),interp1(xp,yp,xi(:),style)]) %!assert (interp1 (xp,yp,xi,style),... %! interp1 (fliplr (xp),fliplr (yp),xi,style),100*eps) %!assert (ppval (interp1 (xp,yp,style,"pp"),xi), %! interp1 (xp,yp,xi,style,"extrap"),10*eps) %!error interp1 (1,1,1, style) ## ENDBLOCK ## ENDBLOCKTEST %!# test linear extrapolation %!assert (interp1 ([1:5],[3:2:11],[0,6],"linear","extrap"), [1, 13], eps) %!assert (interp1 (xp, yp, [-1, max(xp)+1],"linear",5), [5, 5]) %!assert (interp1 (1:2,1:2,1.4,"nearest"), 1) %!assert (interp1 (1:2,1:2,1.4,"linear"), 1.4) %!assert (interp1 (1:4,1:4,1.4,"cubic"), 1.4) %!assert (interp1 (1:2,1:2,1.1, "spline"), 1.1) %!assert (interp1 (1:3,1:3,1.4,"spline"), 1.4) %!assert (interp1 (1:2:4,1:2:4,1.4,"*nearest"), 1) %!assert (interp1 (1:2:4,1:2:4,[0,1,1.4,3,4],"*linear"), [NA,1,1.4,3,NA]) %!assert (interp1 (1:2:8,1:2:8,1.4,"*cubic"), 1.4) %!assert (interp1 (1:2,1:2,1.3, "*spline"), 1.3) %!assert (interp1 (1:2:6,1:2:6,1.4,"*spline"), 1.4) %!assert (interp1 ([3,2,1],[3,2,2],2.5), 2.5) %!assert (interp1 ([1,2,2,3,4],[0,1,4,2,1],[-1,1.5,2,2.5,3.5], "linear", "extrap"), [-2,0.5,4,3,1.5]) %!assert (interp1 ([4,4,3,2,0],[0,1,4,2,1],[1.5,4,4.5], "linear"), [1.75,1,NA]) %!assert (interp1 (0:4, 2.5), 1.5) %!error interp1 () %!error interp1 (1,1,1, "linear") %!error interp1 (1,1,1, "*nearest") %!error interp1 (1,1,1, "*linear") %!error interp1 (1:2,1:2,1, "bogus")