Mercurial > hg > octave-lyh
view scripts/signal/arch_rnd.m @ 3191:e4f4b2d26ee9
[project @ 1998-10-23 05:43:59 by jwe]
author | jwe |
---|---|
date | Fri, 23 Oct 1998 05:44:01 +0000 |
parents | |
children | 041ea33fbbf4 |
line wrap: on
line source
## Copyright (C) 1995, 1996, 1997 Kurt Hornik ## ## This program is free software; you can redistribute it and/or modify ## it under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 2, or (at your option) ## any later version. ## ## This program is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this file. If not, write to the Free Software Foundation, ## 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. ## usage: y = arch_rnd (a, b, T) ## ## Simulates an ARCH sequence y of length T with AR coefficients b and ## CH coefficients a. ## I.e., y follows the model ## y(t) = b(1) + b(2) * y(t-1) + ... + b(lb) * y(t-lb+1) + e(t), ## where e(t), given y up to time t-1, is N(0, h(t)), with ## h(t) = a(1) + a(2) * e(t-1)^2 + ... + a(la) * e(t-la+1)^2. ## Author: KH <Kurt.Hornik@ci.tuwien.ac.at> ## Description: Simulate an ARCH process function y = arch_rnd (a, b, T) if (nargin != 3) usage ("arch_rnd (a, b, T)"); endif if !( (min (size (a)) == 1) && (min (size (b)) == 1) ) error ("arch_rnd: a and b must both be scalars or vectors"); endif if !( is_scalar (T) && (T > 0) && (rem (T, 1) == 0) ) error ("arch_rnd: T must be a positive integer"); endif if !(a(1) > 0) error ("arch_rnd: a(1) must be positive"); endif ## perhaps add a test for the roots of a(z) here ... la = length (a); a = reshape (a, 1, la); if (la == 1) a = [a, 0]; la = la + 1; endif lb = length (b); b = reshape (b, 1, lb); if (lb == 1) b = [b, 0]; lb = lb + 1; endif M = max([la lb]); e = zeros (T, 1); h = zeros (T, 1); y = zeros (T, 1); h(1) = a(1); e(1) = sqrt (h(1)) * randn; y(1) = b(1) + e(1); for t= 2 : M; ta = min ([t la]); h(t) = a(1) + a(2:ta) * e(t-1:t-ta+1).^2; e(t) = sqrt (h(t)) * randn; tb = min ([t lb]); y(t) = b(1) + b(2:tb) * y(t-1:t-tb+1) + e(t); endfor if (T > M) for t = M+1 : T; h(t) = a(1) + a(2:la) * e(t-1:t-la+1).^2; e(t) = sqrt (h(t)) * randn; y(t) = b(1) + b(2:lb) * y(t-1:t-tb+1) + e(t); endfor endif y = y(1:T); endfunction