Mercurial > hg > octave-lyh
view scripts/testfun/speed.m @ 13141:e81ddf9cacd5
maint: untabify and remove trailing whitespace from source files
* bicg.m, gmres.m, pkg.m: Untabify and remove trailing whitespace.
* libcruft/Makefile.am, libcruft/blas-xtra/cdotc3.f,
libcruft/blas-xtra/cmatm3.f, libcruft/blas-xtra/ddot3.f,
libcruft/blas-xtra/dmatm3.f, libcruft/blas-xtra/sdot3.f,
libcruft/blas-xtra/smatm3.f, libcruft/blas-xtra/zdotc3.f,
libcruft/blas-xtra/zmatm3.f, libcruft/lapack-xtra/crsf2csf.f,
libcruft/lapack-xtra/zrsf2csf.f, liboctave/Array.cc,
liboctave/DASPK-opts.in, liboctave/DASRT-opts.in,
liboctave/DASSL-opts.in, liboctave/LSODE-opts.in,
liboctave/Makefile.a,mliboctave/Quad-opts.in,
liboctave/Sparse-perm-op-defs.h,
scripts/Makefile.a,mscripts/deprecated/glpkmex.m,
scripts/general/blkdiag.m, scripts/general/interp1.m,
scripts/general/profshow.m, scripts/general/quadl.m,
scripts/general/triplequad.m, scripts/help/__makeinfo__.m,
scripts/io/strread.m, scripts/io/textread.m, scripts/io/textscan.m,
scripts/linear-algebra/rank.m, scripts/miscellaneous/gzip.m,
scripts/miscellaneous/private/__xzip__.m,
scripts/miscellaneous/tempdir.m, scripts/miscellaneous/unpack.m,
scripts/pkg/pkg.m, scripts/plot/allchild.m, scripts/plot/ancestor.m,
scripts/plot/cla.m, scripts/plot/clf.m, scripts/plot/findall.m,
scripts/plot/findobj.m, scripts/plot/gca.m, scripts/plot/gcf.m,
scripts/plot/hggroup.m, scripts/plot/isfigure.m,
scripts/plot/ishghandle.m, scripts/plot/legend.m,
scripts/plot/line.m, scripts/plot/loglog.m, scripts/plot/patch.m,
scripts/plot/print.m, scripts/plot/private/__quiver__.m,
scripts/plot/private/__scatter__.m, scripts/plot/rectangle.m,
scripts/plot/semilogx.m, scripts/plot/semilogy.m,
scripts/plot/surface.m, scripts/plot/text.m, scripts/plot/title.m,
scripts/plot/trisurf.m, scripts/plot/view.m, scripts/plot/whitebg.m,
scripts/plot/xlabel.m, scripts/plot/xlim.m, scripts/plot/ylabel.m,
scripts/plot/ylim.m, scripts/plot/zlabel.m, scripts/plot/zlim.m,
scripts/polynomial/mkpp.m, scripts/polynomial/polygcd.m,
scripts/polynomial/ppint.m, scripts/polynomial/ppjumps.m,
scripts/polynomial/ppval.m, scripts/set/setxor.m,
scripts/sparse/bicgstab.m, scripts/sparse/cgs.m,
scripts/sparse/spconvert.m, scripts/specfun/nthroot.m,
scripts/strings/strmatch.m, scripts/strings/untabify.m,
scripts/testfun/demo.m, scripts/testfun/example.m,
src/DLD-FUNCTIONS/filter.cc, src/DLD-FUNCTIONS/mgorth.cc,
src/DLD-FUNCTIONS/quadcc.cc, src/DLD-FUNCTIONS/str2double.cc,
src/Makefile.a,msrc/gl-render.cc, src/gl2ps-renderer.cc,
src/graphics.cc, src/octave-config.cc.in, src/octave-config.in,
src/ov-class.h, src/ov-fcn.h, src/profiler.cc, src/profiler.h,
src/pt-binop.cc, src/pt-unop.cc, src/symtab.cc, src/txt-eng-ft.cc:
Remove trailing whitespace.
author | John W. Eaton <jwe@octave.org> |
---|---|
date | Thu, 15 Sep 2011 12:51:10 -0400 |
parents | 1ca3cde15b18 |
children | b48e11427ac0 |
line wrap: on
line source
## Copyright (C) 2000-2011 Paul Kienzle ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {} speed (@var{f}, @var{init}, @var{max_n}, @var{f2}, @var{tol}) ## @deftypefnx {Function File} {[@var{order}, @var{n}, @var{T_f}, @var{T_f2}] =} speed (@dots{}) ## ## Determine the execution time of an expression (@var{f}) for various input ## values (@var{n}). The @var{n} are log-spaced from 1 to @var{max_n}. For ## each @var{n}, an initialization expression (@var{init}) is computed to ## create any data needed for the test. If a second expression (@var{f2}) is ## given then the execution times of the two expressions are compared. When ## called without output arguments the results are printed to stdout and ## displayed graphically. ## ## @table @code ## @item @var{f} ## The expression to evaluate. ## ## @item @var{max_n} ## The maximum test length to run. Default value is 100. Alternatively, ## use @code{[min_n, max_n]} or specify the @var{n} exactly with ## @code{[n1, n2, @dots{}, nk]}. ## ## @item @var{init} ## Initialization expression for function argument values. Use @var{k} ## for the test number and @var{n} for the size of the test. This should ## compute values for all variables used by @var{f}. Note that @var{init} will ## be evaluated first for @math{k = 0}, so things which are constant throughout ## the test series can be computed once. The default value is ## @code{@var{x} = randn (@var{n}, 1)}. ## ## @item @var{f2} ## An alternative expression to evaluate, so that the speed of two ## expressions can be directly compared. The default is @code{[]}. ## ## @item @var{tol} ## Tolerance used to compare the results of expression @var{f} and expression ## @var{f2}. If @var{tol} is positive, the tolerance is an absolute one. ## If @var{tol} is negative, the tolerance is a relative one. The default is ## @code{eps}. If @var{tol} is @code{Inf}, then no comparison will be made. ## ## @item @var{order} ## The time complexity of the expression @math{O(a*n^p)}. This ## is a structure with fields @code{a} and @code{p}. ## ## @item @var{n} ## The values @var{n} for which the expression was calculated AND ## the execution time was greater than zero. ## ## @item @var{T_f} ## The nonzero execution times recorded for the expression @var{f} in seconds. ## ## @item @var{T_f2} ## The nonzero execution times recorded for the expression @var{f2} in seconds. ## If required, the mean time ratio is simply @code{mean (T_f./T_f2)}. ## ## @end table ## ## The slope of the execution time graph shows the approximate ## power of the asymptotic running time @math{O(n^p)}. This ## power is plotted for the region over which it is approximated ## (the latter half of the graph). The estimated power is not ## very accurate, but should be sufficient to determine the ## general order of an algorithm. It should indicate if, for ## example, the implementation is unexpectedly @math{O(n^2)} ## rather than @math{O(n)} because it extends a vector each ## time through the loop rather than pre-allocating storage. ## In the current version of Octave, the following is not the ## expected @math{O(n)}. ## ## @example ## speed ("for i = 1:n, y@{i@} = x(i); endfor", "", [1000, 10000]) ## @end example ## ## @noindent ## But it is if you preallocate the cell array @code{y}: ## ## @example ## @group ## speed ("for i = 1:n, y@{i@} = x(i); endfor", ... ## "x = rand (n, 1); y = cell (size (x));", [1000, 10000]) ## @end group ## @end example ## ## An attempt is made to approximate the cost of individual ## operations, but it is wildly inaccurate. You can improve the ## stability somewhat by doing more work for each @code{n}. For ## example: ## ## @example ## speed ("airy(x)", "x = rand (n, 10)", [10000, 100000]) ## @end example ## ## When comparing two different expressions (@var{f}, @var{f2}), the slope ## of the line on the speedup ratio graph should be larger than 1 if the new ## expression is faster. Better algorithms have a shallow slope. Generally, ## vectorizing an algorithm will not change the slope of the execution ## time graph, but will shift it relative to the original. For ## example: ## ## @example ## @group ## speed ("sum (x)", "", [10000, 100000], ... ## "v = 0; for i = 1:length (x), v += x(i); end") ## @end group ## @end example ## ## The following is a more complex example. If there was an original version ## of @code{xcorr} using for loops and a second version using an FFT, then ## one could compare the run speed for various lags as follows, or for a fixed ## lag with varying vector lengths as follows: ## ## @example ## @group ## speed ("xcorr (x, n)", "x = rand (128, 1);", 100, ## "xcorr_orig (x, n)", -100*eps) ## speed ("xcorr (x, 15)", "x = rand (20+n, 1);", 100, ## "xcorr_orig (x, n)", -100*eps) ## @end group ## @end example ## ## Assuming one of the two versions is in xcorr_orig, this ## would compare their speed and their output values. Note that the ## FFT version is not exact, so we specify an acceptable tolerance on ## the comparison @code{100*eps}, and that the errors should be computed ## relatively, as @code{abs ((@var{x} - @var{y}) ./ @var{y})} rather than ## absolutely as @code{abs (@var{x} - @var{y})}. ## ## Type @code{example('speed')} to see some real examples. Note that for ## obscure reasons, examples 1 and 2 can not be run directly using ## @code{demo('speed')}. Instead use, @code{eval ( example('speed', 1) )} ## or @code{eval ( example('speed', 2) )}. ## @end deftypefn ## FIXME: consider two dimensional speedup surfaces for functions like kron. function [__order, __test_n, __tnew, __torig] = speed (__f1, __init, __max_n, __f2, __tol) if (nargin < 1 || nargin > 6) print_usage (); endif if (nargin < 2 || isempty (__init)) __init = "x = randn(n, 1);"; endif if (nargin < 3 || isempty (__max_n)) __max_n = 100; endif if (nargin < 4) __f2 = []; endif if (nargin < 5 || isempty (__tol)) __tol = eps; endif __numtests = 15; ## Let user specify range of n. if (isscalar (__max_n)) __min_n = 1; assert (__max_n > __min_n); __test_n = logspace (0, log10 (__max_n), __numtests); elseif (length (__max_n) == 2) __min_n = __max_n(1); __max_n = __max_n(2); assert (__min_n >= 1); __test_n = logspace (log10 (__min_n), log10 (__max_n), __numtests); else __test_n = __max_n; endif ## Force n to be an integer. __test_n = unique (round (__test_n)); assert (__test_n >= 1); __torig = __tnew = zeros (size (__test_n)); ## Print and plot the data if no output is requested. do_display = (nargout == 0); if (do_display) disp (cstrcat ("testing ", __f1, "\ninit: ", __init)); endif ## Make sure the functions are freshly loaded by evaluating them at ## test_n(1); first have to initialize the args though. n = 1; k = 0; eval (cstrcat (__init, ";")); if (! isempty (__f2)) eval (cstrcat (__f2, ";")); endif eval (cstrcat (__f1, ";")); ## Run the tests. for k = 1:length (__test_n) n = __test_n(k); eval (cstrcat (__init, ";")); if (do_display) printf ("n%i = %i ",k, n); fflush (stdout); endif eval (cstrcat ("__t = time();", __f1, "; __v1=ans; __t = time()-__t;")); if (__t < 0.25) eval (cstrcat ("__t2 = time();", __f1, "; __t2 = time()-__t2;")); eval (cstrcat ("__t3 = time();", __f1, "; __t3 = time()-__t3;")); __t = min ([__t, __t2, __t3]); endif __tnew(k) = __t; if (! isempty (__f2)) eval (cstrcat ("__t = time();", __f2, "; __v2=ans; __t = time()-__t;")); if (__t < 0.25) eval (cstrcat ("__t2 = time();", __f2, "; __t2 = time()-__t2;")); eval (cstrcat ("__t3 = time();", __f2, "; __t3 = time()-__t3;")); endif __torig(k) = __t; if (! isinf(__tol)) assert (__v1, __v2, __tol); endif endif endfor ## Drop times of zero. if (! isempty (__f2)) zidx = (__tnew < 100*eps | __torig < 100*eps); __test_n(zidx) = []; __tnew(zidx) = []; __torig(zidx) = []; else zidx = (__tnew < 100*eps); __test_n(zidx) = []; __tnew(zidx) = []; endif ## Approximate time complexity and return it if requested. tailidx = ceil(length(__test_n)/2):length(__test_n); p = polyfit (log (__test_n(tailidx)), log (__tnew(tailidx)), 1); if (nargout > 0) __order.p = p(1); __order.a = exp (p(2)); endif if (do_display) figure; endif if (do_display && ! isempty (__f2)) subplot (1, 2, 1); semilogx (__test_n, __torig./__tnew, cstrcat ("-*r;", strrep (__f1, ";", "."), "/", strrep (__f2, ";", "."), ";"), __test_n, __tnew./__torig, cstrcat ("-*g;", strrep (__f2, ";", "."), "/", strrep (__f1, ";", "."), ";")); xlabel ("test length"); title (__f1); ylabel ("speedup ratio"); subplot (1, 2, 2); loglog (__test_n, __tnew*1000, cstrcat ("*-g;", strrep (__f1, ";", "."), ";"), __test_n, __torig*1000, cstrcat ("*-r;", strrep (__f2,";","."), ";")); xlabel ("test length"); ylabel ("best execution time (ms)"); title (cstrcat ("init: ", __init)); ratio = mean (__torig ./ __tnew); printf ("\n\nMean runtime ratio = %.3g for '%s' vs '%s'\n", ratio, __f2, __f1); elseif (do_display) loglog (__test_n, __tnew*1000, "*-g;execution time;"); xlabel ("test length"); ylabel ("best execution time (ms)"); title (cstrcat (__f1, " init: ", __init)); endif if (do_display) ## Plot time complexity approximation (using milliseconds). order = sprintf ("O(n^%g)", round (10*p(1))/10); v = polyval (p, log (__test_n(tailidx))); loglog (__test_n(tailidx), exp(v)*1000, sprintf ("b;%s;", order)); ## Get base time to 1 digit of accuracy. dt = exp (p(2)); dt = floor (dt/10^floor(log10(dt)))*10^floor(log10(dt)); if (log10 (dt) >= -0.5) time = sprintf ("%g s", dt); elseif (log10 (dt) >= -3.5) time = sprintf ("%g ms", dt*1e3); elseif (log10 (dt) >= -6.5) time = sprintf ("%g us", dt*1e6); else time = sprintf ("%g ns", dt*1e9); endif if (do_display) ## Display nicely formatted complexity. printf ("\nFor %s:\n", __f1); printf (" asymptotic power: %s\n", order); printf (" approximate time per operation: %s\n", time); endif endif endfunction %!demo if 1 %! function x = build_orig(n) %! ## extend the target vector on the fly %! for i=0:n-1, x([1:10]+i*10) = 1:10; endfor %! endfunction %! function x = build(n) %! ## preallocate the target vector %! x = zeros(1, n*10); %! try %! if (prefer_column_vectors), x = x.'; endif %! catch %! end %! for i=0:n-1, x([1:10]+i*10) = 1:10; endfor %! endfunction %! %! disp("-----------------------"); %! type build_orig; %! disp("-----------------------"); %! type build; %! disp("-----------------------"); %! %! disp("Preallocated vector test.\nThis takes a little while..."); %! speed('build(n)', '', 1000, 'build_orig(n)'); %! clear build build_orig %! disp("Note how much faster it is to pre-allocate a vector."); %! disp("Notice the peak speedup ratio."); %! endif %!demo if 1 %! function x = build_orig(n) %! for i=0:n-1, x([1:10]+i*10) = 1:10; endfor %! endfunction %! function x = build(n) %! idx = [1:10]'; %! x = idx(:,ones(1,n)); %! x = reshape(x, 1, n*10); %! try %! if (prefer_column_vectors), x = x.'; endif %! catch %! end %! endfunction %! %! disp("-----------------------"); %! type build_orig; %! disp("-----------------------"); %! type build; %! disp("-----------------------"); %! %! disp("Vectorized test.\nThis takes a little while..."); %! speed('build(n)', '', 1000, 'build_orig(n)'); %! clear build build_orig %! disp("-----------------------"); %! disp("This time, the for loop is done away with entirely."); %! disp("Notice how much bigger the speedup is than in example 1."); %! endif %!error speed (); %!error speed (1, 2, 3, 4, 5, 6, 7); %!test %! [order, n, T_f1, T_f2] = speed ("airy (x)", "x = rand (n, 10)", [100, 1000]); %! assert (isstruct (order)); %! assert (size (order), [1, 1]); %! assert (fieldnames (order), {"p"; "a"}); %! assert (isnumeric (n)); %! assert (size (n), [1, 15]); %! assert (isnumeric (T_f1)); %! assert (size (T_f1), [1, 15]); %! assert (isnumeric (T_f1)); %! assert (size (T_f2), [1, 15]); %!test %! [order, n, T_f1, T_f2] = speed ("sum (x)", "", [100, 1000], "v = 0; for i = 1:length (x), v += x(i); end"); %! assert (isstruct (order)); %! assert (size (order), [1, 1]); %! assert (fieldnames (order), {"p"; "a"}); %! assert (isnumeric (n)); %! assert (size (n), [1, 15]); %! assert (isnumeric (T_f1)); %! assert (size (T_f1), [1, 15]); %! assert (isnumeric (T_f1)); %! assert (size (T_f2), [1, 15]);