Mercurial > hg > octave-lyh
view scripts/general/bicubic.m @ 8920:eb63fbe60fab
update copyright notices
author | John W. Eaton <jwe@octave.org> |
---|---|
date | Sat, 07 Mar 2009 10:41:27 -0500 |
parents | 235d71d77221 |
children | 1bf0ce0930be |
line wrap: on
line source
## Copyright (C) 2005, 2006, 2007, 2008, 2009 Hoxide Ma ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {@var{zi}=} bicubic (@var{x}, @var{y}, @var{z}, @var{xi}, @var{yi}, @var{extrapval}) ## ## Return a matrix @var{zi} corresponding to the bicubic ## interpolations at @var{xi} and @var{yi} of the data supplied ## as @var{x}, @var{y} and @var{z}. Points outside the grid are set ## to @var{extrapval}. ## ## See @url{http://wiki.woodpecker.org.cn/moin/Octave/Bicubic} ## for further information. ## @seealso{interp2} ## @end deftypefn ## Bicubic interpolation method. ## Author: Hoxide Ma <hoxide_dirac@yahoo.com.cn> function F = bicubic (X, Y, Z, XI, YI, extrapval, spline_alpha) if (nargin < 1 || nargin > 7) print_usage (); endif if (nargin == 7 && isscalar(spline_alpha)) a = spline_alpha else a = 0.5; endif if (nargin < 6) extrapval = NaN; endif if (isa (X, "single") || isa (Y, "single") || isa (Z, "single") || isa (XI, "single") || isa (YI, "single")) myeps = eps("single"); else myeps = eps; endif if (nargin <= 2) ## bicubic (Z) or bicubic (Z, 2) if (nargin == 1) n = 1; else n = Y; endif Z = X; X = []; [rz, cz] = size (Z); s = linspace (1, cz, (cz-1)*pow2(n)+1); t = linspace (1, rz, (rz-1)*pow2(n)+1); elseif (nargin == 3) if (! isvector (X) || ! isvector (Y)) error ("XI and YI must be vector"); endif s = Y; t = Z; Z = X; [rz, cz] = size (Z); elseif (nargin == 5 || nargin == 6) [rz, cz] = size (Z) ; if (isvector (X) && isvector (Y)) if (rz != length (Y) || cz != length (X)) error ("length of X and Y must match the size of Z"); endif elseif (size_equal (X, Y) && size_equal (X, Z)) X = X(1,:); Y = Y(:,1); else error ("X, Y and Z must be martrices of same size"); endif ## Mark values outside the lookup table. xfirst_ind = find (XI < X(1)); xlast_ind = find (XI > X(cz)); yfirst_ind = find (YI < Y(1)); ylast_ind = find (YI > Y(rz)); ## Set value outside the table preliminary to min max index. XI(xfirst_ind) = X(1); XI(xlast_ind) = X(cz); YI(yfirst_ind) = Y(1); YI(ylast_ind) = Y(rz); X = reshape (X, 1, cz); X(cz) *= 1 + sign (X(cz))*myeps; if (X(cz) == 0) X(cz) = myeps; endif; XI = reshape (XI, 1, length (XI)); [m, i] = sort ([X, XI]); o = cumsum (i <= cz); xidx = o(find (i > cz)); Y = reshape (Y, rz, 1); Y(rz) *= 1 + sign (Y(rz))*myeps; if (Y(rz) == 0) Y(rz) = myeps; endif; YI = reshape (YI, length (YI), 1); [m, i] = sort ([Y; YI]); o = cumsum (i <= rz); yidx = o([find(i > rz)]); ## Set s and t used follow codes. s = xidx + ((XI .- X(xidx))./(X(xidx+1) .- X(xidx))); t = yidx + ((YI - Y(yidx))./(Y(yidx+1) - Y(yidx))); else print_usage (); endif if (rz < 3 || cz < 3) error ("Z at least a 3 by 3 matrices"); endif inds = floor (s); d = find (s == cz); s = s - floor (s); inds(d) = cz-1; s(d) = 1.0; d = []; indt = floor (t); d = find (t == rz); t = t - floor (t); indt(d) = rz-1; t(d) = 1.0; d = []; p = zeros (size (Z) + 2); p(2:rz+1,2:cz+1) = Z; p(1,:) = (6*(1-a))*p(2,:) - 3*p(3,:) + (6*a-2)*p(4,:); p(rz+2,:) = (6*(1-a))*p(rz+1,:) - 3*p(rz,:) + (6*a-2)*p(rz-1,:); p(:,1) = (6*(1-a))*p(:,2) - 3*p(:,3) + (6*a-2)*p(:,4); p(:,cz+2) = (6*(1-a))*p(:,cz+1) - 3*p(:,cz) + (6*a-2)*p(:,cz-1); ## Calculte the C1(t) C2(t) C3(t) C4(t) and C1(s) C2(s) C3(s) C4(s). t2 = t.*t; t3 = t2.*t; ct0 = -a .* t3 + (2 * a) .* t2 - a .* t ; # -a G0 ct1 = (2-a) .* t3 + (-3+a) .* t2 + 1 ; # F0 - a G1 ct2 = (a-2) .* t3 + (-2 *a + 3) .* t2 + a .* t ; # F1 + a G0 ct3 = a .* t3 - a .* t2; # a G1 t = []; t2 = []; t3 = []; s2 = s.*s; s3 = s2.*s; cs0 = -a .* s3 + (2 * a) .* s2 - a .*s ; # -a G0 cs1 = (2-a) .* s3 + (-3 + a) .* s2 + 1 ; # F0 - a G1 cs2 = (a-2) .* s3 + (-2 *a + 3) .* s2 + a .*s ; # F1 + a G0 cs3 = a .* s3 - a .* s2; # a G1 s = []; s2 = []; s3 = []; cs0 = cs0([1,1,1,1],:); cs1 = cs1([1,1,1,1],:); cs2 = cs2([1,1,1,1],:); cs3 = cs3([1,1,1,1],:); lent = length (ct0); lens = length (cs0); F = zeros (lent, lens); for i = 1:lent it = indt(i); int = [it, it+1, it+2, it+3]; F(i,:) = ([ct0(i),ct1(i),ct2(i),ct3(i)] * (p(int,inds) .* cs0 + p(int,inds+1) .* cs1 + p(int,inds+2) .* cs2 + p(int,inds+3) .* cs3)); endfor ## Set points outside the table to extrapval. if (! (isempty (xfirst_ind) && isempty (xlast_ind))) F(:, [xfirst_ind, xlast_ind]) = extrapval; endif if (! (isempty (yfirst_ind) && isempty (ylast_ind))) F([yfirst_ind; ylast_ind], :) = extrapval; endif endfunction %!demo %! A=[13,-1,12;5,4,3;1,6,2]; %! x=[0,1,4]+10; y=[-10,-9,-8]; %! xi=linspace(min(x),max(x),17); %! yi=linspace(min(y),max(y),26)'; %! mesh(xi,yi,bicubic(x,y,A,xi,yi)); %! [x,y] = meshgrid(x,y); %! hold on; plot3(x(:),y(:),A(:),"b*"); hold off;