Mercurial > hg > octave-lyh
view scripts/general/interp1.m @ 8920:eb63fbe60fab
update copyright notices
author | John W. Eaton <jwe@octave.org> |
---|---|
date | Sat, 07 Mar 2009 10:41:27 -0500 |
parents | cadc73247d65 |
children | 1bf0ce0930be |
line wrap: on
line source
## Copyright (C) 2000, 2006, 2007, 2008, 2009 Paul Kienzle ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {@var{yi} =} interp1 (@var{x}, @var{y}, @var{xi}) ## @deftypefnx {Function File} {@var{yi} =} interp1 (@dots{}, @var{method}) ## @deftypefnx {Function File} {@var{yi} =} interp1 (@dots{}, @var{extrap}) ## @deftypefnx {Function File} {@var{pp} =} interp1 (@dots{}, 'pp') ## ## One-dimensional interpolation. Interpolate @var{y}, defined at the ## points @var{x}, at the points @var{xi}. The sample points @var{x} ## must be strictly monotonic. If @var{y} is an array, treat the columns ## of @var{y} separately. ## ## Method is one of: ## ## @table @asis ## @item 'nearest' ## Return the nearest neighbour. ## @item 'linear' ## Linear interpolation from nearest neighbours ## @item 'pchip' ## Piece-wise cubic hermite interpolating polynomial ## @item 'cubic' ## Cubic interpolation from four nearest neighbours ## @item 'spline' ## Cubic spline interpolation--smooth first and second derivatives ## throughout the curve ## @end table ## ## Appending '*' to the start of the above method forces @code{interp1} ## to assume that @var{x} is uniformly spaced, and only @code{@var{x} ## (1)} and @code{@var{x} (2)} are referenced. This is usually faster, ## and is never slower. The default method is 'linear'. ## ## If @var{extrap} is the string 'extrap', then extrapolate values beyond ## the endpoints. If @var{extrap} is a number, replace values beyond the ## endpoints with that number. If @var{extrap} is missing, assume NA. ## ## If the string argument 'pp' is specified, then @var{xi} should not be ## supplied and @code{interp1} returns the piece-wise polynomial that ## can later be used with @code{ppval} to evaluate the interpolation. ## There is an equivalence, such that @code{ppval (interp1 (@var{x}, ## @var{y}, @var{method}, 'pp'), @var{xi}) == interp1 (@var{x}, @var{y}, ## @var{xi}, @var{method}, 'extrap')}. ## ## An example of the use of @code{interp1} is ## ## @example ## @group ## xf = [0:0.05:10]; ## yf = sin (2*pi*xf/5); ## xp = [0:10]; ## yp = sin (2*pi*xp/5); ## lin = interp1 (xp, yp, xf); ## spl = interp1 (xp, yp, xf, "spline"); ## cub = interp1 (xp, yp, xf, "cubic"); ## near = interp1 (xp, yp, xf, "nearest"); ## plot (xf, yf, "r", xf, lin, "g", xf, spl, "b", ## xf, cub, "c", xf, near, "m", xp, yp, "r*"); ## legend ("original", "linear", "spline", "cubic", "nearest") ## @end group ## @end example ## ## @seealso{interpft} ## @end deftypefn ## Author: Paul Kienzle ## Date: 2000-03-25 ## added 'nearest' as suggested by Kai Habel ## 2000-07-17 Paul Kienzle ## added '*' methods and matrix y ## check for proper table lengths ## 2002-01-23 Paul Kienzle ## fixed extrapolation function yi = interp1 (x, y, varargin) if (nargin < 3 || nargin > 6) print_usage (); endif method = "linear"; extrap = NA; xi = []; pp = false; firstnumeric = true; if (nargin > 2) for i = 1:length (varargin) arg = varargin{i}; if (ischar (arg)) arg = tolower (arg); if (strcmp ("extrap", arg)) extrap = "extrap"; elseif (strcmp ("pp", arg)) pp = true; else method = arg; endif else if (firstnumeric) xi = arg; firstnumeric = false; else extrap = arg; endif endif endfor endif ## reshape matrices for convenience x = x(:); nx = size (x, 1); if (isvector(y) && size (y, 1) == 1) y = y(:); endif ndy = ndims (y); szy = size (y); ny = szy(1); nc = prod (szy(2:end)); y = reshape (y, ny, nc); szx = size (xi); xi = xi(:); ## determine sizes if (nx < 2 || ny < 2) error ("interp1: table too short"); endif ## determine which values are out of range and set them to extrap, ## unless extrap == "extrap" in which case, extrapolate them like we ## should be doing in the first place. minx = x(1); maxx = x(nx); if (minx > maxx) tmp = minx; minx = maxx; maxx = tmp; endif if (method(1) == "*") dx = x(2) - x(1); endif if (! pp) if (ischar (extrap) && strcmp (extrap, "extrap")) range = 1:size (xi, 1); yi = zeros (size (xi, 1), size (y, 2)); else range = find (xi >= minx & xi <= maxx); yi = extrap * ones (size (xi, 1), size (y, 2)); if (isempty (range)) if (! isvector (y) && length (szx) == 2 && (szx(1) == 1 || szx(2) == 1)) if (szx(1) == 1) yi = reshape (yi, [szx(2), szy(2:end)]); else yi = reshape (yi, [szx(1), szy(2:end)]); endif else yi = reshape (yi, [szx, szy(2:end)]); endif return; endif xi = xi(range); endif endif if (strcmp (method, "nearest")) if (pp) yi = mkpp ([x(1); (x(1:end-1)+x(2:end))/2; x(end)], y, szy(2:end)); else idx = lookup (0.5*(x(1:nx-1)+x(2:nx)), xi) + 1; yi(range,:) = y(idx,:); endif elseif (strcmp (method, "*nearest")) if (pp) yi = mkpp ([x(1); x(1)+[0.5:(ny-1)]'*dx; x(nx)], y, szy(2:end)); else idx = max (1, min (ny, floor((xi-x(1))/dx+1.5))); yi(range,:) = y(idx,:); endif elseif (strcmp (method, "linear")) dy = y(2:ny,:) - y(1:ny-1,:); dx = x(2:nx) - x(1:nx-1); if (pp) yi = mkpp (x, [dy./dx, y(1:end-1)], szy(2:end)); else ## find the interval containing the test point idx = lookup (x, xi, "lr"); ## use the endpoints of the interval to define a line s = (xi - x(idx))./dx(idx); yi(range,:) = s(:,ones(1,nc)).*dy(idx,:) + y(idx,:); endif elseif (strcmp (method, "*linear")) if (pp) dy = [y(2:ny,:) - y(1:ny-1,:)]; yi = mkpp (x(1) + [0:ny-1]*dx, [dy./dx, y(1:end-1)], szy(2:end)); else ## find the interval containing the test point t = (xi - x(1))/dx + 1; idx = max(1,min(ny,floor(t))); ## use the endpoints of the interval to define a line dy = [y(2:ny,:) - y(1:ny-1,:); y(ny,:) - y(ny-1,:)]; s = t - idx; yi(range,:) = s(:,ones(1,nc)).*dy(idx,:) + y(idx,:); endif elseif (strcmp (method, "pchip") || strcmp (method, "*pchip")) if (nx == 2 || method(1) == "*") x = linspace (x(1), x(nx), ny); endif ## Note that pchip's arguments are transposed relative to interp1 if (pp) yi = pchip (x.', y.'); yi.d = szy(2:end); else yi(range,:) = pchip (x.', y.', xi.').'; endif elseif (strcmp (method, "cubic") || (strcmp (method, "*cubic") && pp)) ## FIXME Is there a better way to treat pp return return and *cubic if (method(1) == "*") x = linspace (x(1), x(nx), ny).'; nx = ny; endif if (nx < 4 || ny < 4) error ("interp1: table too short"); endif idx = lookup (x(2:nx-1), xi, "lr"); ## Construct cubic equations for each interval using divided ## differences (computation of c and d don't use divided differences ## but instead solve 2 equations for 2 unknowns). Perhaps ## reformulating this as a lagrange polynomial would be more efficient. i = 1:nx-3; J = ones (1, nc); dx = diff (x); dx2 = x(i+1).^2 - x(i).^2; dx3 = x(i+1).^3 - x(i).^3; a = diff (y, 3)./dx(i,J).^3/6; b = (diff (y(1:nx-1,:), 2)./dx(i,J).^2 - 6*a.*x(i+1,J))/2; c = (diff (y(1:nx-2,:), 1) - a.*dx3(:,J) - b.*dx2(:,J))./dx(i,J); d = y(i,:) - ((a.*x(i,J) + b).*x(i,J) + c).*x(i,J); if (pp) xs = [x(1);x(3:nx-2)]; yi = mkpp ([x(1);x(3:nx-2);x(nx)], [a(:), (b(:) + 3.*xs(:,J).*a(:)), ... (c(:) + 2.*xs(:,J).*b(:) + 3.*xs(:,J)(:).^2.*a(:)), ... (d(:) + xs(:,J).*c(:) + xs(:,J).^2.*b(:) + ... xs(:,J).^3.*a(:))], szy(2:end)); else yi(range,:) = ((a(idx,:).*xi(:,J) + b(idx,:)).*xi(:,J) ... + c(idx,:)).*xi(:,J) + d(idx,:); endif elseif (strcmp (method, "*cubic")) if (nx < 4 || ny < 4) error ("interp1: table too short"); endif ## From: Miloje Makivic ## http://www.npac.syr.edu/projects/nasa/MILOJE/final/node36.html t = (xi - x(1))/dx + 1; idx = max (min (floor (t), ny-2), 2); t = t - idx; t2 = t.*t; tp = 1 - 0.5*t; a = (1 - t2).*tp; b = (t2 + t).*tp; c = (t2 - t).*tp/3; d = (t2 - 1).*t/6; J = ones (1, nc); yi(range,:) = a(:,J) .* y(idx,:) + b(:,J) .* y(idx+1,:) ... + c(:,J) .* y(idx-1,:) + d(:,J) .* y(idx+2,:); elseif (strcmp (method, "spline") || strcmp (method, "*spline")) if (nx == 2 || method(1) == "*") x = linspace(x(1), x(nx), ny); endif ## Note that spline's arguments are transposed relative to interp1 if (pp) yi = spline (x.', y.'); yi.d = szy(2:end); else yi(range,:) = spline (x.', y.', xi.').'; endif else error ("interp1: invalid method '%s'", method); endif if (! pp) if (! isvector (y) && length (szx) == 2 && (szx(1) == 1 || szx(2) == 1)) if (szx(1) == 1) yi = reshape (yi, [szx(2), szy(2:end)]); else yi = reshape (yi, [szx(1), szy(2:end)]); endif else yi = reshape (yi, [szx, szy(2:end)]); endif endif endfunction %!demo %! xf=0:0.05:10; yf = sin(2*pi*xf/5); %! xp=0:10; yp = sin(2*pi*xp/5); %! lin=interp1(xp,yp,xf,"linear"); %! spl=interp1(xp,yp,xf,"spline"); %! cub=interp1(xp,yp,xf,"pchip"); %! near=interp1(xp,yp,xf,"nearest"); %! plot(xf,yf,"r",xf,near,"g",xf,lin,"b",xf,cub,"c",xf,spl,"m",xp,yp,"r*"); %! legend ("original","nearest","linear","pchip","spline") %! %-------------------------------------------------------- %! % confirm that interpolated function matches the original %!demo %! xf=0:0.05:10; yf = sin(2*pi*xf/5); %! xp=0:10; yp = sin(2*pi*xp/5); %! lin=interp1(xp,yp,xf,"*linear"); %! spl=interp1(xp,yp,xf,"*spline"); %! cub=interp1(xp,yp,xf,"*cubic"); %! near=interp1(xp,yp,xf,"*nearest"); %! plot(xf,yf,"r",xf,near,"g",xf,lin,"b",xf,cub,"c",xf,spl,"m",xp,yp,"r*"); %! legend ("*original","*nearest","*linear","*cubic","*spline") %! %-------------------------------------------------------- %! % confirm that interpolated function matches the original %!demo %! t = 0 : 0.3 : pi; dt = t(2)-t(1); %! n = length (t); k = 100; dti = dt*n/k; %! ti = t(1) + [0 : k-1]*dti; %! y = sin (4*t + 0.3) .* cos (3*t - 0.1); %! ddyc = diff(diff(interp1(t,y,ti,'cubic'))./dti)./dti; %! ddys = diff(diff(interp1(t,y,ti,'spline'))./dti)./dti; %! ddyp = diff(diff(interp1(t,y,ti,'pchip'))./dti)./dti; %! plot (ti(2:end-1), ddyc,'g+',ti(2:end-1),ddys,'b*', ... %! ti(2:end-1),ddyp,'c^'); %! legend('cubic','spline','pchip'); %! title("Second derivative of interpolated 'sin (4*t + 0.3) .* cos (3*t - 0.1)'"); ## For each type of interpolated test, confirm that the interpolated ## value at the knots match the values at the knots. Points away ## from the knots are requested, but only 'nearest' and 'linear' ## confirm they are the correct values. %!shared xp, yp, xi, style %! xp=0:2:10; yp = sin(2*pi*xp/5); %! xi = [-1, 0, 2.2, 4, 6.6, 10, 11]; ## The following BLOCK/ENDBLOCK section is repeated for each style ## nearest, linear, cubic, spline, pchip ## The test for ppval of cubic has looser tolerance, but otherwise ## the tests are identical. ## Note that the block checks style and *style; if you add more tests ## before to add them to both sections of each block. One test, ## style vs. *style, occurs only in the first section. ## There is an ENDBLOCKTEST after the final block %!test style = "nearest"; ## BLOCK %!assert (interp1(xp, yp, [min(xp)-1, max(xp)+1],style), [NA, NA]); %!assert (interp1(xp,yp,xp,style), yp, 100*eps); %!assert (interp1(xp,yp,xp',style), yp', 100*eps); %!assert (interp1(xp',yp',xp',style), yp', 100*eps); %!assert (interp1(xp',yp',xp,style), yp, 100*eps); %!assert (isempty(interp1(xp',yp',[],style))); %!assert (isempty(interp1(xp,yp,[],style))); %!assert (interp1(xp,[yp',yp'],xi(:),style),... %! [interp1(xp,yp,xi(:),style),interp1(xp,yp,xi(:),style)]); %!assert (interp1(xp,yp,xi,style),... %! interp1(fliplr(xp),fliplr(yp),xi,style),100*eps); %!assert (ppval(interp1(xp,yp,style,"pp"),xi), %! interp1(xp,yp,xi,style,"extrap"),10*eps); %!error interp1(1,1,1, style); %!assert (interp1(xp,[yp',yp'],xi,style), %! interp1(xp,[yp',yp'],xi,["*",style]),100*eps); %!test style=['*',style]; %!assert (interp1(xp, yp, [min(xp)-1, max(xp)+1],style), [NA, NA]); %!assert (interp1(xp,yp,xp,style), yp, 100*eps); %!assert (interp1(xp,yp,xp',style), yp', 100*eps); %!assert (interp1(xp',yp',xp',style), yp', 100*eps); %!assert (interp1(xp',yp',xp,style), yp, 100*eps); %!assert (isempty(interp1(xp',yp',[],style))); %!assert (isempty(interp1(xp,yp,[],style))); %!assert (interp1(xp,[yp',yp'],xi(:),style),... %! [interp1(xp,yp,xi(:),style),interp1(xp,yp,xi(:),style)]); %!assert (interp1(xp,yp,xi,style),... %! interp1(fliplr(xp),fliplr(yp),xi,style),100*eps); %!assert (ppval(interp1(xp,yp,style,"pp"),xi), %! interp1(xp,yp,xi,style,"extrap"),10*eps); %!error interp1(1,1,1, style); ## ENDBLOCK %!test style='linear'; ## BLOCK %!assert (interp1(xp, yp, [min(xp)-1, max(xp)+1],style), [NA, NA]); %!assert (interp1(xp,yp,xp,style), yp, 100*eps); %!assert (interp1(xp,yp,xp',style), yp', 100*eps); %!assert (interp1(xp',yp',xp',style), yp', 100*eps); %!assert (interp1(xp',yp',xp,style), yp, 100*eps); %!assert (isempty(interp1(xp',yp',[],style))); %!assert (isempty(interp1(xp,yp,[],style))); %!assert (interp1(xp,[yp',yp'],xi(:),style),... %! [interp1(xp,yp,xi(:),style),interp1(xp,yp,xi(:),style)]); %!assert (interp1(xp,yp,xi,style),... %! interp1(fliplr(xp),fliplr(yp),xi,style),100*eps); %!assert (ppval(interp1(xp,yp,style,"pp"),xi), %! interp1(xp,yp,xi,style,"extrap"),10*eps); %!error interp1(1,1,1, style); %!assert (interp1(xp,[yp',yp'],xi,style), %! interp1(xp,[yp',yp'],xi,["*",style]),100*eps); %!test style=['*',style]; %!assert (interp1(xp, yp, [min(xp)-1, max(xp)+1],style), [NA, NA]); %!assert (interp1(xp,yp,xp,style), yp, 100*eps); %!assert (interp1(xp,yp,xp',style), yp', 100*eps); %!assert (interp1(xp',yp',xp',style), yp', 100*eps); %!assert (interp1(xp',yp',xp,style), yp, 100*eps); %!assert (isempty(interp1(xp',yp',[],style))); %!assert (isempty(interp1(xp,yp,[],style))); %!assert (interp1(xp,[yp',yp'],xi(:),style),... %! [interp1(xp,yp,xi(:),style),interp1(xp,yp,xi(:),style)]); %!assert (interp1(xp,yp,xi,style),... %! interp1(fliplr(xp),fliplr(yp),xi,style),100*eps); %!assert (ppval(interp1(xp,yp,style,"pp"),xi), %! interp1(xp,yp,xi,style,"extrap"),10*eps); %!error interp1(1,1,1, style); ## ENDBLOCK %!test style='cubic'; ## BLOCK %!assert (interp1(xp, yp, [min(xp)-1, max(xp)+1],style), [NA, NA]); %!assert (interp1(xp,yp,xp,style), yp, 100*eps); %!assert (interp1(xp,yp,xp',style), yp', 100*eps); %!assert (interp1(xp',yp',xp',style), yp', 100*eps); %!assert (interp1(xp',yp',xp,style), yp, 100*eps); %!assert (isempty(interp1(xp',yp',[],style))); %!assert (isempty(interp1(xp,yp,[],style))); %!assert (interp1(xp,[yp',yp'],xi(:),style),... %! [interp1(xp,yp,xi(:),style),interp1(xp,yp,xi(:),style)]); %!assert (interp1(xp,yp,xi,style),... %! interp1(fliplr(xp),fliplr(yp),xi,style),100*eps); %!assert (ppval(interp1(xp,yp,style,"pp"),xi), %! interp1(xp,yp,xi,style,"extrap"),100*eps); %!error interp1(1,1,1, style); %!assert (interp1(xp,[yp',yp'],xi,style), %! interp1(xp,[yp',yp'],xi,["*",style]),100*eps); %!test style=['*',style]; %!assert (interp1(xp, yp, [min(xp)-1, max(xp)+1],style), [NA, NA]); %!assert (interp1(xp,yp,xp,style), yp, 100*eps); %!assert (interp1(xp,yp,xp',style), yp', 100*eps); %!assert (interp1(xp',yp',xp',style), yp', 100*eps); %!assert (interp1(xp',yp',xp,style), yp, 100*eps); %!assert (isempty(interp1(xp',yp',[],style))); %!assert (isempty(interp1(xp,yp,[],style))); %!assert (interp1(xp,[yp',yp'],xi(:),style),... %! [interp1(xp,yp,xi(:),style),interp1(xp,yp,xi(:),style)]); %!assert (interp1(xp,yp,xi,style),... %! interp1(fliplr(xp),fliplr(yp),xi,style),100*eps); %!assert (ppval(interp1(xp,yp,style,"pp"),xi), %! interp1(xp,yp,xi,style,"extrap"),100*eps); %!error interp1(1,1,1, style); ## ENDBLOCK %!test style='pchip'; ## BLOCK %!assert (interp1(xp, yp, [min(xp)-1, max(xp)+1],style), [NA, NA]); %!assert (interp1(xp,yp,xp,style), yp, 100*eps); %!assert (interp1(xp,yp,xp',style), yp', 100*eps); %!assert (interp1(xp',yp',xp',style), yp', 100*eps); %!assert (interp1(xp',yp',xp,style), yp, 100*eps); %!assert (isempty(interp1(xp',yp',[],style))); %!assert (isempty(interp1(xp,yp,[],style))); %!assert (interp1(xp,[yp',yp'],xi(:),style),... %! [interp1(xp,yp,xi(:),style),interp1(xp,yp,xi(:),style)]); %!assert (interp1(xp,yp,xi,style),... %! interp1(fliplr(xp),fliplr(yp),xi,style),100*eps); %!assert (ppval(interp1(xp,yp,style,"pp"),xi), %! interp1(xp,yp,xi,style,"extrap"),10*eps); %!error interp1(1,1,1, style); %!assert (interp1(xp,[yp',yp'],xi,style), %! interp1(xp,[yp',yp'],xi,["*",style]),100*eps); %!test style=['*',style]; %!assert (interp1(xp, yp, [min(xp)-1, max(xp)+1],style), [NA, NA]); %!assert (interp1(xp,yp,xp,style), yp, 100*eps); %!assert (interp1(xp,yp,xp',style), yp', 100*eps); %!assert (interp1(xp',yp',xp',style), yp', 100*eps); %!assert (interp1(xp',yp',xp,style), yp, 100*eps); %!assert (isempty(interp1(xp',yp',[],style))); %!assert (isempty(interp1(xp,yp,[],style))); %!assert (interp1(xp,[yp',yp'],xi(:),style),... %! [interp1(xp,yp,xi(:),style),interp1(xp,yp,xi(:),style)]); %!assert (interp1(xp,yp,xi,style),... %! interp1(fliplr(xp),fliplr(yp),xi,style),100*eps); %!assert (ppval(interp1(xp,yp,style,"pp"),xi), %! interp1(xp,yp,xi,style,"extrap"),10*eps); %!error interp1(1,1,1, style); ## ENDBLOCK %!test style='spline'; ## BLOCK %!assert (interp1(xp, yp, [min(xp)-1, max(xp)+1],style), [NA, NA]); %!assert (interp1(xp,yp,xp,style), yp, 100*eps); %!assert (interp1(xp,yp,xp',style), yp', 100*eps); %!assert (interp1(xp',yp',xp',style), yp', 100*eps); %!assert (interp1(xp',yp',xp,style), yp, 100*eps); %!assert (isempty(interp1(xp',yp',[],style))); %!assert (isempty(interp1(xp,yp,[],style))); %!assert (interp1(xp,[yp',yp'],xi(:),style),... %! [interp1(xp,yp,xi(:),style),interp1(xp,yp,xi(:),style)]); %!assert (interp1(xp,yp,xi,style),... %! interp1(fliplr(xp),fliplr(yp),xi,style),100*eps); %!assert (ppval(interp1(xp,yp,style,"pp"),xi), %! interp1(xp,yp,xi,style,"extrap"),10*eps); %!error interp1(1,1,1, style); %!assert (interp1(xp,[yp',yp'],xi,style), %! interp1(xp,[yp',yp'],xi,["*",style]),100*eps); %!test style=['*',style]; %!assert (interp1(xp, yp, [min(xp)-1, max(xp)+1],style), [NA, NA]); %!assert (interp1(xp,yp,xp,style), yp, 100*eps); %!assert (interp1(xp,yp,xp',style), yp', 100*eps); %!assert (interp1(xp',yp',xp',style), yp', 100*eps); %!assert (interp1(xp',yp',xp,style), yp, 100*eps); %!assert (isempty(interp1(xp',yp',[],style))); %!assert (isempty(interp1(xp,yp,[],style))); %!assert (interp1(xp,[yp',yp'],xi(:),style),... %! [interp1(xp,yp,xi(:),style),interp1(xp,yp,xi(:),style)]); %!assert (interp1(xp,yp,xi,style),... %! interp1(fliplr(xp),fliplr(yp),xi,style),100*eps); %!assert (ppval(interp1(xp,yp,style,"pp"),xi), %! interp1(xp,yp,xi,style,"extrap"),10*eps); %!error interp1(1,1,1, style); ## ENDBLOCK ## ENDBLOCKTEST %!# test linear extrapolation %!assert (interp1([1:5],[3:2:11],[0,6],"linear","extrap"), [1, 13], eps); %!assert (interp1(xp, yp, [-1, max(xp)+1],"linear",5), [5, 5]); %!error interp1 %!error interp1(1:2,1:2,1,"bogus") %!assert (interp1(1:2,1:2,1.4,"nearest"),1); %!error interp1(1,1,1, "linear"); %!assert (interp1(1:2,1:2,1.4,"linear"),1.4); %!error interp1(1:3,1:3,1, "cubic"); %!assert (interp1(1:4,1:4,1.4,"cubic"),1.4); %!error interp1(1:2,1:2,1, "spline"); %!assert (interp1(1:3,1:3,1.4,"spline"),1.4); %!error interp1(1,1,1, "*nearest"); %!assert (interp1(1:2:4,1:2:4,1.4,"*nearest"),1); %!error interp1(1,1,1, "*linear"); %!assert (interp1(1:2:4,1:2:4,[0,1,1.4,3,4],"*linear"),[NA,1,1.4,3,NA]); %!error interp1(1:3,1:3,1, "*cubic"); %!assert (interp1(1:2:8,1:2:8,1.4,"*cubic"),1.4); %!error interp1(1:2,1:2,1, "*spline"); %!assert (interp1(1:2:6,1:2:6,1.4,"*spline"),1.4); %!assert (interp1([3,2,1],[3,2,2],2.5),2.5)