Mercurial > hg > octave-lyh
view scripts/general/quadv.m @ 8920:eb63fbe60fab
update copyright notices
author | John W. Eaton <jwe@octave.org> |
---|---|
date | Sat, 07 Mar 2009 10:41:27 -0500 |
parents | cadc73247d65 |
children | 1bf0ce0930be |
line wrap: on
line source
## Copyright (C) 2008, 2009 David Bateman ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {@var{q} =} quadv (@var{f}, @var{a}, @var{b}) ## @deftypefnx {Function File} {@var{q} =} quadl (@var{f}, @var{a}, @var{b}, @var{tol}) ## @deftypefnx {Function File} {@var{q} =} quadl (@var{f}, @var{a}, @var{b}, @var{tol}, @var{trace}) ## @deftypefnx {Function File} {@var{q} =} quadl (@var{f}, @var{a}, @var{b}, @var{tol}, @var{trace}, @var{p1}, @var{p2}, @dots{}) ## @deftypefnx {Function File} {[@var{q}, @var{fcnt}] =} quadl (@dots{}) ## ## Numerically evaluate integral using adaptive Simpson's rule. ## @code{quadv (@var{f}, @var{a}, @var{b})} approximates the integral of ## @code{@var{f}(@var{x})} to the default absolute tolerance of @code{1e-6}. ## @var{f} is either a function handle, inline function or string ## containing the name of the function to evaluate. The function @var{f} ## must accept a string, and can return a vector representing the ## approximation to @var{n} different sub-functions. ## ## If defined, @var{tol} defines the absolute tolerance to which to ## which to integrate each sub-interval of @code{@var{f}(@var{x})}. ## While if @var{trace} is defined, displays the left end point of the ## current interval, the interval length, and the partial integral. ## ## Additional arguments @var{p1}, etc, are passed directly to @var{f}. ## To use default values for @var{tol} and @var{trace}, one may pass ## empty matrices. ## @seealso{triplequad, dblquad, quad, quadl, quadgk, trapz} ## @end deftypefn function [q, fcnt] = quadv (f, a, b, tol, trace, varargin) if (nargin < 3) print_usage (); endif if (nargin < 4) tol = []; endif if (nargin < 5) trace = []; endif if (isa (a, "single") || isa (b, "single")) myeps = eps ("single"); else myeps = eps; endif if (isempty (tol)) tol = 1e-6; endif if (isempty (trace)) trace = 0; endif ## Split the interval into 3 abscissa, and apply a 3 point Simpson's rule c = (a + b) / 2; fa = feval (f, a, varargin{:}); fc = feval (f, c, varargin{:}); fb = feval (f, b, varargin{:}); fcnt = 3; ## If have edge singularities, move edge point by eps*(b-a) as ## discussed in Shampine paper used to implement quadgk if (isinf (fa)) fa = feval (f, a + myeps * (b-a), varargin{:}); endif if (isinf (fb)) fb = feval (f, b - myeps * (b-a), varargin{:}); endif h = (b - a) / 2; q = (b - a) / 6 * (fa + 4 * fc + fb); [q, fcnt, hmin] = simpsonstp (f, a, b, c, fa, fb, fc, q, fcnt, abs (b - a), tol, trace, varargin{:}); if (fcnt > 10000) warning ("maximum iteration count reached"); elseif (isnan (q) || isinf (q)) warning ("infinite or NaN function evaluations were returned"); elseif (hmin < (b - a) * myeps) warning ("minimum step size reached -- possibly singular integral"); endif endfunction function [q, fcnt, hmin] = simpsonstp (f, a, b, c, fa, fb, fc, q0, fcnt, hmin, tol, trace, varargin) if (fcnt > 10000) q = q0; else d = (a + c) / 2; e = (c + b) / 2; fd = feval (f, d, varargin{:}); fe = feval (f, e, varargin{:}); fcnt += 2; q1 = (c - a) / 6 * (fa + 4 * fd + fc); q2 = (b - c) / 6 * (fc + 4 * fe + fb); q = q1 + q2; if (abs(a - c) < hmin) hmin = abs (a - c); endif if (trace) disp ([fcnt, a, b-a, q]); endif ## Force at least one adpative step. if (fcnt == 5 || abs (q - q0) > tol) [q1, fcnt, hmin] = simpsonstp (f, a, c, d, fa, fc, fd, q1, fcnt, hmin, tol, trace, varargin{:}); [q2, fcnt, hmin] = simpsonstp (f, c, b, e, fc, fb, fe, q2, fcnt, hmin, tol, trace, varargin{:}); q = q1 + q2; endif endif endfunction %!assert (quadv (@sin, 0, 2 * pi), 0, 1e-5) %!assert (quadv (@sin, 0, pi), 2, 1e-5) %% Handles weak singularities at the edge %!assert (quadv (@(x) 1 ./ sqrt(x), 0, 1), 2, 1e-5)