Mercurial > hg > octave-lyh
view scripts/geometry/griddata.m @ 8920:eb63fbe60fab
update copyright notices
author | John W. Eaton <jwe@octave.org> |
---|---|
date | Sat, 07 Mar 2009 10:41:27 -0500 |
parents | e07e93c04080 |
children | 0a427d3244bf |
line wrap: on
line source
## Copyright (C) 1999, 2000, 2007, 2008, 2009 Kai Habel ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {@var{zi} =} griddata (@var{x}, @var{y}, @var{z}, @var{xi}, @var{yi}, @var{method}) ## @deftypefnx {Function File} {[@var{xi}, @var{yi}, @var{zi}] =} griddata (@var{x}, @var{y}, @var{z}, @var{xi}, @var{yi}, @var{method}) ## ## Generate a regular mesh from irregular data using interpolation. ## The function is defined by @code{@var{z} = f (@var{x}, @var{y})}. ## The interpolation points are all @code{(@var{xi}, @var{yi})}. If ## @var{xi}, @var{yi} are vectors then they are made into a 2D mesh. ## ## The interpolation method can be @code{"nearest"}, @code{"cubic"} or ## @code{"linear"}. If method is omitted it defaults to @code{"linear"}. ## @seealso{delaunay} ## @end deftypefn ## Author: Kai Habel <kai.habel@gmx.de> ## Adapted-by: Alexander Barth <barth.alexander@gmail.com> ## xi and yi are not "meshgridded" if both are vectors ## of the same size (for compatibility) function [rx, ry, rz] = griddata (x, y, z, xi, yi, method) if (nargin == 5) method = "linear"; endif if (nargin < 5 || nargin > 7) print_usage (); endif if (ischar (method)) method = tolower (method); endif if (! all (size (x) == size (y) & size (x) == size (z))) error ("griddata: x, y, and z must be vectors of same length"); endif ## Meshgrid xi and yi if they are vectors unless they ## are vectors of the same length. if (isvector (xi) && isvector (yi) && numel (xi) != numel (yi)) [xi, yi] = meshgrid (xi, yi); endif if (any (size (xi) != size (yi))) error ("griddata: xi and yi must be vectors or matrices of same size"); endif [nr, nc] = size (xi); ## Triangulate data. tri = delaunay (x, y); zi = nan (size (xi)); if (strcmp (method, "cubic")) error ("griddata: cubic interpolation not yet implemented"); elseif (strcmp (method, "nearest")) ## Search index of nearest point. idx = dsearch (x, y, tri, xi, yi); valid = !isnan (idx); zi(valid) = z(idx(valid)); elseif (strcmp (method, "linear")) ## Search for every point the enclosing triangle. tri_list = tsearch (x, y, tri, xi(:), yi(:)); ## Only keep the points within triangles. valid = !isnan (reshape (tri_list, size (xi))); tri_list = tri_list(!isnan (tri_list)); nr_t = rows (tri_list); ## Assign x,y,z for each point of triangle. x1 = x(tri(tri_list,1)); x2 = x(tri(tri_list,2)); x3 = x(tri(tri_list,3)); y1 = y(tri(tri_list,1)); y2 = y(tri(tri_list,2)); y3 = y(tri(tri_list,3)); z1 = z(tri(tri_list,1)); z2 = z(tri(tri_list,2)); z3 = z(tri(tri_list,3)); ## Calculate norm vector. N = cross ([x2-x1, y2-y1, z2-z1], [x3-x1, y3-y1, z3-z1]); N_norm = sqrt (sumsq (N, 2)); N = N ./ N_norm(:,[1,1,1]); ## Calculate D of plane equation ## Ax+By+Cz+D = 0; D = -(N(:,1) .* x1 + N(:,2) .* y1 + N(:,3) .* z1); ## Calculate zi by solving plane equation for xi, yi. zi(valid) = -(N(:,1).*xi(valid) + N(:,2).*yi(valid) + D) ./ N(:,3); else error ("griddata: unknown interpolation method"); endif if (nargout == 3) rx = xi; ry = yi; rz = zi; elseif (nargout == 1) rx = zi; elseif (nargout == 0) mesh (xi, yi, zi); endif endfunction %!testif HAVE_QHULL %! [xx,yy]=meshgrid(linspace(-1,1,32)); %! x = xx(:); %! x = x + 10 * (2 * round(rand(size(x))) - 1) * eps; %! y = yy(:); %! y = y + 10 * (2 * round(rand(size(y))) - 1) * eps; %! z = sin(2*(x.^2+y.^2)); %! zz = griddata(x,y,z,xx,yy,'linear'); %! zz2 = sin(2*(xx.^2+yy.^2)); %! zz2(isnan(zz)) = NaN; %! assert (zz, zz2, 100 * eps) %!demo %! x=2*rand(100,1)-1; %! y=2*rand(size(x))-1; %! z=sin(2*(x.^2+y.^2)); %! [xx,yy]=meshgrid(linspace(-1,1,32)); %! griddata(x,y,z,xx,yy); %! title('nonuniform grid sampled at 100 points'); %!demo %! x=2*rand(1000,1)-1; %! y=2*rand(size(x))-1; %! z=sin(2*(x.^2+y.^2)); %! [xx,yy]=meshgrid(linspace(-1,1,32)); %! griddata(x,y,z,xx,yy); %! title('nonuniform grid sampled at 1000 points'); %!demo %! x=2*rand(1000,1)-1; %! y=2*rand(size(x))-1; %! z=sin(2*(x.^2+y.^2)); %! [xx,yy]=meshgrid(linspace(-1,1,32)); %! griddata(x,y,z,xx,yy,'nearest'); %! title('nonuniform grid sampled at 1000 points with nearest neighbor');