Mercurial > hg > octave-lyh
view scripts/geometry/inpolygon.m @ 8920:eb63fbe60fab
update copyright notices
author | John W. Eaton <jwe@octave.org> |
---|---|
date | Sat, 07 Mar 2009 10:41:27 -0500 |
parents | cadc73247d65 |
children | 1bf0ce0930be |
line wrap: on
line source
## Copyright (C) 2006, 2007, 2008, 2009 Frederick (Rick) A Niles ## and S�ren Hauberg ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {[@var{in}, @var{on}] =} inpolygon (@var{x}, @var{y}, @var{xv}, @var{xy}) ## ## For a polygon defined by @code{(@var{xv}, @var{yv})} points, determine ## if the points @code{(@var{x}, @var{y})} are inside or outside the polygon. ## The variables @var{x}, @var{y}, must have the same dimension. The optional ## output @var{on} gives the points that are on the polygon. ## ## @end deftypefn ## Author: Frederick (Rick) A Niles <niles@rickniles.com> ## Created: 14 November 2006 ## Vectorized by S�ren Hauberg <soren@hauberg.org> ## The method for determining if a point is in in a polygon is based on ## the algorithm shown on ## http://local.wasp.uwa.edu.au/~pbourke/geometry/insidepoly/ and is ## credited to Randolph Franklin. function [IN, ON] = inpolygon (X, Y, xv, yv) if (nargin != 4) print_usage (); endif if (! (isreal (X) && isreal (Y) && ismatrix (Y) && ismatrix (Y) && size_equal (X, Y))) error ("inpolygon: first two arguments must be real matrices of same size"); elseif (! (isreal (xv) && isreal (yv) && isvector (xv) && isvector (yv) && size_equal (xv, yv))) error ("inpolygon: last two arguments must be real vectors of same size"); endif npol = length (xv); do_boundary = (nargout >= 2); IN = zeros (size(X), "logical"); if (do_boundary) ON = zeros (size(X), "logical"); endif j = npol; for i = 1 : npol delta_xv = xv(j) - xv(i); delta_yv = yv(j) - yv(i); ## distance = [distance from (X,Y) to edge] * length(edge) distance = delta_xv .* (Y - yv(i)) - (X - xv(i)) .* delta_yv; ## ## is Y between the y-values of edge i,j ## AND (X,Y) on the left of the edge ? idx1 = (((yv(i) <= Y & Y < yv(j)) | (yv(j) <= Y & Y < yv(i))) & 0 < distance.*delta_yv); IN (idx1) = !IN (idx1); ## Check if (X,Y) are actually ON the boundary of the polygon. if (do_boundary) idx2 = (((yv(i) <= Y & Y <= yv(j)) | (yv(j) <= Y & Y <= yv(i))) & ((xv(i) <= X & X <= xv(j)) | (xv(j) <= X & X <= xv(i))) & (0 == distance | !delta_xv)); ON (idx2) = true; endif j = i; endfor endfunction %!demo %! xv=[ 0.05840, 0.48375, 0.69356, 1.47478, 1.32158, \ %! 1.94545, 2.16477, 1.87639, 1.18218, 0.27615, \ %! 0.05840 ]; %! yv=[ 0.60628, 0.04728, 0.50000, 0.50000, 0.02015, \ %! 0.18161, 0.78850, 1.13589, 1.33781, 1.04650, \ %! 0.60628 ]; %! xa=[0:0.1:2.3]; %! ya=[0:0.1:1.4]; %! [x,y]=meshgrid(xa,ya); %! [IN,ON]=inpolygon(x,y,xv,yv); %! %! inside=IN & !ON; %! plot(xv,yv) %! hold on %! plot(x(inside),y(inside),"@g") %! plot(x(~IN),y(~IN),"@m") %! plot(x(ON),y(ON),"@b") %! hold off %! disp("Green points are inside polygon, magenta are outside,"); %! disp("and blue are on boundary."); %!demo %! xv=[ 0.05840, 0.48375, 0.69356, 1.47478, 1.32158, \ %! 1.94545, 2.16477, 1.87639, 1.18218, 0.27615, \ %! 0.05840, 0.73295, 1.28913, 1.74221, 1.16023, \ %! 0.73295, 0.05840 ]; %! yv=[ 0.60628, 0.04728, 0.50000, 0.50000, 0.02015, \ %! 0.18161, 0.78850, 1.13589, 1.33781, 1.04650, \ %! 0.60628, 0.82096, 0.67155, 0.96114, 1.14833, \ %! 0.82096, 0.60628]; %! xa=[0:0.1:2.3]; %! ya=[0:0.1:1.4]; %! [x,y]=meshgrid(xa,ya); %! [IN,ON]=inpolygon(x,y,xv,yv); %! %! inside=IN & ~ ON; %! plot(xv,yv) %! hold on %! plot(x(inside),y(inside),"@g") %! plot(x(~IN),y(~IN),"@m") %! plot(x(ON),y(ON),"@b") %! hold off %! disp("Green points are inside polygon, magenta are outside,"); %! disp("and blue are on boundary.");