Mercurial > hg > octave-lyh
view scripts/optimization/fzero.m @ 8920:eb63fbe60fab
update copyright notices
author | John W. Eaton <jwe@octave.org> |
---|---|
date | Sat, 07 Mar 2009 10:41:27 -0500 |
parents | ff61b53eb294 |
children | 1bf0ce0930be |
line wrap: on
line source
## Copyright (C) 2008, 2009 VZLU Prague, a.s. ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## ## Author: Jaroslav Hajek <highegg@gmail.com> ## -*- texinfo -*- ## @deftypefn{Function File}{[@var{x}, @var{fval}, @var{info}, @var{output}] =} fzero (@var{fun}, @var{x0}, @var{options}) ## Find a zero point of a univariate function. @var{fun} should be a function ## handle or name. @var{x0} specifies a starting point. @var{options} is a ## structure specifying additional options. Currently, @code{fzero} ## recognizes these options: @code{"FunValCheck"}, @code{"OutputFcn"}, ## @code{"TolX"}, @code{"MaxIter"}, @code{"MaxFunEvals"}. ## For description of these options, see @ref{doc-optimset,,optimset}. ## ## On exit, the function returns @var{x}, the approximate zero point ## and @var{fval}, the function value thereof. ## @var{info} is an exit flag that can have these values: ## @itemize ## @item 1 ## The algorithm converged to a solution. ## @item 0 ## Maximum number of iterations or function evaluations has been exhausted. ## @item -1 ## The algorithm has been terminated from user output function. ## @item -2 ## A general unexpected error. ## @item -3 ## A non-real value encountered. ## @item -4 ## A NaN value encountered. ## @end itemize ## @seealso{optimset, fsolve} ## @end deftypefn ## This is essentially the ACM algorithm 748: Enclosing Zeros of ## Continuous Functions due to Alefeld, Potra and Shi, ACM Transactions ## on Mathematical Software, Vol. 21, No. 3, September 1995. Although ## the workflow should be the same, the structure of the algorithm has ## been transformed non-trivially; instead of the authors' approach of ## sequentially calling building blocks subprograms we implement here a ## FSM version using one interior point determination and one bracketing ## per iteration, thus reducing the number of temporary variables and ## simplifying the algorithm structure. Further, this approach reduces ## the need for external functions and error handling. The algorithm has ## also been slightly modified. ## PKG_ADD: __all_opts__ ("fzero"); function [x, fval, info, output] = fzero (fun, x0, options = struct ()) ## Get default options if requested. if (nargin == 1 && ischar (fun) && strcmp (fun, 'defaults')) x = optimset ("MaxIter", Inf, "MaxFunEvals", Inf, "TolX", 0, \ "OutputFcn", [], "FunValCheck", "off"); return; endif if (nargin < 2 || nargin > 3) print_usage (); endif if (ischar (fun)) fun = str2func (fun); endif ## TODO ## displev = optimget (options, "Display", "notify"); funvalchk = strcmpi (optimget (options, "FunValCheck", "off"), "on"); outfcn = optimget (options, "OutputFcn"); tolx = optimget (options, "TolX", 0); maxiter = optimget (options, "MaxIter", Inf); maxfev = optimget (options, "MaxFunEvals", Inf); persistent mu = 0.5; if (funvalchk) ## Replace fun with a guarded version. fun = @(x) guarded_eval (fun, x); endif ## The default exit flag if exceeded number of iterations. info = 0; niter = 0; nfev = 0; x = fval = a = fa = b = fb = NaN; ## Prepare... a = x0(1); fa = fun (a); nfev = 1; if (length (x0) > 1) b = x0(2); fb = fun (b); nfev += 1; else ## Try to get b. if (a == 0) aa = 1; else aa = a; endif for b = [0.9*aa, 1.1*aa, aa-1, aa+1, 0.5*aa 1.5*aa, -aa, 2*aa, -10*aa, 10*aa] fb = fun (b); nfev += 1; if (sign (fa) * sign (fb) <= 0) break; endif endfor endif if (b < a) u = a; a = b; b = u; fu = fa; fa = fb; fb = fu; endif if (! (sign (fa) * sign (fb) <= 0)) error ("fzero:bracket", "fzero: not a valid initial bracketing"); endif itype = 1; if (abs (fa) < abs (fb)) u = a; fu = fa; else u = b; fu = fb; endif d = e = u; fd = fe = fu; mba = mu*(b - a); while (niter < maxiter && nfev < maxfev) switch (itype) case 1 ## The initial test. if (b - a <= 2*(2 * abs (u) * eps + tolx)) x = u; fval = fu; info = 1; break; endif if (abs (fa) <= 1e3*abs (fb) && abs (fb) <= 1e3*abs (fa)) ## Secant step. c = u - (a - b) / (fa - fb) * fu; else ## Bisection step. c = 0.5*(a + b); endif d = u; fd = fu; itype = 5; case {2, 3} l = length (unique ([fa, fb, fd, fe])); if (l == 4) ## Inverse cubic interpolation. q11 = (d - e) * fd / (fe - fd); q21 = (b - d) * fb / (fd - fb); q31 = (a - b) * fa / (fb - fa); d21 = (b - d) * fd / (fd - fb); d31 = (a - b) * fb / (fb - fa); q22 = (d21 - q11) * fb / (fe - fb); q32 = (d31 - q21) * fa / (fd - fa); d32 = (d31 - q21) * fd / (fd - fa); q33 = (d32 - q22) * fa / (fe - fa); c = a + q31 + q32 + q33; endif if (l < 4 || sign (c - a) * sign (c - b) > 0) ## Quadratic interpolation + newton. a0 = fa; a1 = (fb - fa)/(b - a); a2 = ((fd - fb)/(d - b) - a1) / (d - a); ## Modification 1: this is simpler and does not seem to be worse. c = a - a0/a1; if (a2 != 0) c = a - a0/a1; for i = 1:itype pc = a0 + (a1 + a2*(c - b))*(c - a); pdc = a1 + a2*(2*c - a - b); if (pdc == 0) c = a - a0/a1; break; endif c -= pc/pdc; endfor endif endif itype += 1; case 4 ## Double secant step. c = u - 2*(b - a)/(fb - fa)*fu; ## Bisect if too far. if (abs (c - u) > 0.5*(b - a)) c = 0.5 * (b + a); endif itype = 5; case 5 ## Bisection step. c = 0.5 * (b + a); itype = 2; endswitch ## Don't let c come too close to a or b. delta = 2*0.7*(2 * abs (u) * eps + tolx); if ((b - a) <= 2*delta) c = (a + b)/2; else c = max (a + delta, min (b - delta, c)); endif ## Calculate new point. x = c; fval = fc = fun (c); niter ++; nfev ++; ## Modification 2: skip inverse cubic interpolation if ## nonmonotonicity is detected. if (sign (fc - fa) * sign (fc - fb) >= 0) ## The new point broke monotonicity. ## Disable inverse cubic. fe = fc; else e = d; fe = fd; endif ## Bracketing. if (sign (fa) * sign (fc) < 0) d = b; fd = fb; b = c; fb = fc; elseif (sign (fb) * sign (fc) < 0) d = a; fd = fa; a = c; fa = fc; elseif (fc == 0) a = b = c; fa = fb = fc; info = 1; break; else ## This should never happen. error ("fzero:bracket", "fzero: zero point is not bracketed"); endif ## If there's an output function, use it now. if (outfcn) optv.funccount = niter + 2; optv.fval = fval; optv.iteration = niter; if (outfcn (x, optv, "iter")) info = -1; break; endif endif if (abs (fa) < abs (fb)) u = a; fu = fa; else u = b; fu = fb; endif if (b - a <= 2*(2 * abs (u) * eps + tolx)) info = 1; break; endif ## Skip bisection step if successful reduction. if (itype == 5 && (b - a) <= mba) itype = 2; endif if (itype == 2) mba = mu * (b - a); endif endwhile output.iterations = niter; output.funcCount = niter + 2; output.bracket = [a, b]; output.bracketf = [fa, fb]; endfunction ## An assistant function that evaluates a function handle and checks for ## bad results. function fx = guarded_eval (fun, x) fx = fun (x); fx = fx(1); if (! isreal (fx)) error ("fzero:notreal", "fzero: non-real value encountered"); elseif (isnan (fx)) error ("fzero:isnan", "fzero: NaN value encountered"); endif endfunction %!assert(fzero(@cos, [0, 3]), pi/2, 10*eps) %!assert(fzero(@(x) x^(1/3) - 1e-8, [0,1]), 1e-24, 1e-22*eps)