Mercurial > hg > octave-lyh
view scripts/polynomial/roots.m @ 8920:eb63fbe60fab
update copyright notices
author | John W. Eaton <jwe@octave.org> |
---|---|
date | Sat, 07 Mar 2009 10:41:27 -0500 |
parents | e07e93c04080 |
children | 1bf0ce0930be |
line wrap: on
line source
## Copyright (C) 1994, 1995, 1996, 1997, 1999, 2000, 2004, 2005, 2006, ## 2007, 2008, 2009 John W. Eaton ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {} roots (@var{v}) ## ## For a vector @var{v} with @math{N} components, return ## the roots of the polynomial ## @iftex ## @tex ## $$ ## v_1 z^{N-1} + \cdots + v_{N-1} z + v_N. ## $$ ## @end tex ## @end iftex ## @ifnottex ## ## @example ## v(1) * z^(N-1) + ... + v(N-1) * z + v(N) ## @end example ## @end ifnottex ## ## As an example, the following code finds the roots of the quadratic ## polynomial ## @iftex ## @tex ## $$ p(x) = x^2 - 5. $$ ## @end tex ## @end iftex ## @ifnottex ## @example ## p(x) = x^2 - 5. ## @end example ## @end ifnottex ## @example ## c = [1, 0, -5]; ## roots(c) ## @result{} 2.2361 ## @result{} -2.2361 ## @end example ## Note that the true result is ## @iftex ## @tex ## $\pm \sqrt{5}$ ## @end tex ## @end iftex ## @ifnottex ## @math{+/- sqrt(5)} ## @end ifnottex ## which is roughly ## @iftex ## @tex ## $\pm 2.2361$. ## @end tex ## @end iftex ## @ifnottex ## @math{+/- 2.2361}. ## @end ifnottex ## @seealso{compan} ## @end deftypefn ## Author: KH <Kurt.Hornik@wu-wien.ac.at> ## Created: 24 December 1993 ## Adapted-By: jwe function r = roots (v) if (nargin != 1 || min (size (v)) > 1) print_usage (); elseif (any (isnan(v) | isinf(v))) error ("roots: inputs must not contain Inf or NaN"); endif n = numel (v); v = v(:); ## If v = [ 0 ... 0 v(k+1) ... v(k+l) 0 ... 0 ], we can remove the ## leading k zeros and n - k - l roots of the polynomial are zero. if (isempty (v)) f = v; else f = find (v ./ max (abs (v))); endif m = numel (f); if (m > 0 && n > 1) v = v(f(1):f(m)); l = max (size (v)); if (l > 1) A = diag (ones (1, l-2), -1); A(1,:) = -v(2:l) ./ v(1); r = eig (A); if (f(m) < n) tmp = zeros (n - f(m), 1); r = [r; tmp]; endif else r = zeros (n - f(m), 1); endif else r = []; endif endfunction %!test %! p = [poly([3 3 3 3]), 0 0 0 0]; %! r = sort (roots (p)); %! assert (r, [0; 0; 0; 0; 3; 3; 3; 3], 0.001) %!assert(all (all (abs (roots ([1, -6, 11, -6]) - [3; 2; 1]) < sqrt (eps)))); %!assert(isempty (roots ([]))); %!error roots ([1, 2; 3, 4]); %!assert(isempty (roots (1))); %!error roots ([1, 2; 3, 4]); %!error roots ([1 Inf 1]); %!error roots ([1 NaN 1]); %!assert(roots ([1e-200, -1e200, 1]), 1e-200) %!assert(roots ([1e-200, -1e200 * 1i, 1]), -1e-200 * 1i)