Mercurial > hg > octave-lyh
view scripts/sparse/pcr.m @ 8920:eb63fbe60fab
update copyright notices
author | John W. Eaton <jwe@octave.org> |
---|---|
date | Sat, 07 Mar 2009 10:41:27 -0500 |
parents | cadc73247d65 |
children | 1bf0ce0930be |
line wrap: on
line source
## Copyright (C) 2004, 2006, 2007, 2009 Piotr Krzyzanowski ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {@var{x} =} pcr (@var{a}, @var{b}, @var{tol}, @var{maxit}, @var{m}, @var{x0}, @dots{}) ## @deftypefnx {Function File} {[@var{x}, @var{flag}, @var{relres}, @var{iter}, @var{resvec}] =} pcr (@dots{}) ## ## Solves the linear system of equations @code{@var{a} * @var{x} = ## @var{b}} by means of the Preconditioned Conjugate Residuals iterative ## method. The input arguments are ## ## @itemize ## @item ## @var{a} can be either a square (preferably sparse) matrix or a ## function handle, inline function or string containing the name ## of a function which computes @code{@var{a} * @var{x}}. In principle ## @var{a} should be symmetric and non-singular; if @code{pcr} ## finds @var{a} to be numerically singular, you will get a warning ## message and the @var{flag} output parameter will be set. ## ## @item ## @var{b} is the right hand side vector. ## ## @item ## @var{tol} is the required relative tolerance for the residual error, ## @code{@var{b} - @var{a} * @var{x}}. The iteration stops if @code{norm ## (@var{b} - @var{a} * @var{x}) <= @var{tol} * norm (@var{b} - @var{a} * ## @var{x0})}. If @var{tol} is empty or is omitted, the function sets ## @code{@var{tol} = 1e-6} by default. ## ## @item ## @var{maxit} is the maximum allowable number of iterations; if ## @code{[]} is supplied for @code{maxit}, or @code{pcr} has less ## arguments, a default value equal to 20 is used. ## ## @item ## @var{m} is the (left) preconditioning matrix, so that the iteration is ## (theoretically) equivalent to solving by @code{pcr} @code{@var{P} * ## @var{x} = @var{m} \ @var{b}}, with @code{@var{P} = @var{m} \ @var{a}}. ## Note that a proper choice of the preconditioner may dramatically ## improve the overall performance of the method. Instead of matrix ## @var{m}, the user may pass a function which returns the results of ## applying the inverse of @var{m} to a vector (usually this is the ## preferred way of using the preconditioner). If @code{[]} is supplied ## for @var{m}, or @var{m} is omitted, no preconditioning is applied. ## ## @item ## @var{x0} is the initial guess. If @var{x0} is empty or omitted, the ## function sets @var{x0} to a zero vector by default. ## @end itemize ## ## The arguments which follow @var{x0} are treated as parameters, and ## passed in a proper way to any of the functions (@var{a} or @var{m}) ## which are passed to @code{pcr}. See the examples below for further ## details. The output arguments are ## ## @itemize ## @item ## @var{x} is the computed approximation to the solution of ## @code{@var{a} * @var{x} = @var{b}}. ## ## @item ## @var{flag} reports on the convergence. @code{@var{flag} = 0} means ## the solution converged and the tolerance criterion given by @var{tol} ## is satisfied. @code{@var{flag} = 1} means that the @var{maxit} limit ## for the iteration count was reached. @code{@var{flag} = 3} reports t ## @code{pcr} breakdown, see [1] for details. ## ## @item ## @var{relres} is the ratio of the final residual to its initial value, ## measured in the Euclidean norm. ## ## @item ## @var{iter} is the actual number of iterations performed. ## ## @item ## @var{resvec} describes the convergence history of the method, ## so that @code{@var{resvec} (i)} contains the Euclidean norms of the ## residual after the (@var{i}-1)-th iteration, @code{@var{i} = ## 1,2, @dots{}, @var{iter}+1}. ## @end itemize ## ## Let us consider a trivial problem with a diagonal matrix (we exploit the ## sparsity of A) ## ## @example ## @group ## n = 10; ## a = sparse (diag (1:n)); ## b = rand (N, 1); ## @end group ## @end example ## ## @sc{Example 1:} Simplest use of @code{pcr} ## ## @example ## x = pcr(A, b) ## @end example ## ## @sc{Example 2:} @code{pcr} with a function which computes ## @code{@var{a} * @var{x}}. ## ## @example ## @group ## function y = apply_a (x) ## y = [1:10]'.*x; ## endfunction ## ## x = pcr ("apply_a", b) ## @end group ## @end example ## ## @sc{Example 3:} Preconditioned iteration, with full diagnostics. The ## preconditioner (quite strange, because even the original matrix ## @var{a} is trivial) is defined as a function ## ## @example ## @group ## function y = apply_m (x) ## k = floor (length(x)-2); ## y = x; ## y(1:k) = x(1:k)./[1:k]'; ## endfunction ## ## [x, flag, relres, iter, resvec] = ... ## pcr (a, b, [], [], "apply_m") ## semilogy([1:iter+1], resvec); ## @end group ## @end example ## ## @sc{Example 4:} Finally, a preconditioner which depends on a ## parameter @var{k}. ## ## @example ## @group ## function y = apply_m (x, varargin) ## k = varargin@{1@}; ## y = x; y(1:k) = x(1:k)./[1:k]'; ## endfunction ## ## [x, flag, relres, iter, resvec] = ... ## pcr (a, b, [], [], "apply_m"', [], 3) ## @end group ## @end example ## ## @sc{References} ## ## [1] W. Hackbusch, "Iterative Solution of Large Sparse Systems of ## Equations", section 9.5.4; Springer, 1994 ## ## @seealso{sparse, pcg} ## @end deftypefn ## Author: Piotr Krzyzanowski <piotr.krzyzanowski@mimuw.edu.pl> function [x, flag, relres, iter, resvec] = pcr (a, b, tol, maxit, m, x0, varargin) breakdown = false; if (nargin < 6 || isempty (x0)) x = zeros (size (b)); else x = x0; endif if (nargin < 5) m = []; endif if (nargin < 4 || isempty (maxit)) maxit = 20; endif maxit += 2; if (nargin < 3 || isempty (tol)) tol = 1e-6; endif if (nargin < 2) print_usage (); endif ## init if (isnumeric (a)) # is A a matrix? r = b - a*x; else # then A should be a function! r = b - feval (a, x, varargin{:}); endif if (isnumeric (m)) # is M a matrix? if (isempty (m)) # if M is empty, use no precond p = r; else # otherwise, apply the precond p = m \ r; endif else # then M should be a function! p = feval (m, r, varargin{:}); endif iter = 2; b_bot_old = 1; q_old = p_old = s_old = zeros (size (x)); if (isnumeric (a)) # is A a matrix? q = a * p; else # then A should be a function! q = feval (a, p, varargin{:}); endif resvec(1) = abs (norm (r)); ## iteration while (resvec(iter-1) > tol*resvec(1) && iter < maxit) if (isnumeric (m)) # is M a matrix? if (isempty (m)) # if M is empty, use no precond s = q; else # otherwise, apply the precond s = m \ q; endif else # then M should be a function! s = feval (m, q, varargin{:}); endif b_top = r' * s; b_bot = q' * s; if (b_bot == 0.0) breakdown = true; break; endif lambda = b_top / b_bot; x += lambda*p; r -= lambda*q; if (isnumeric(a)) # is A a matrix? t = a*s; else # then A should be a function! t = feval (a, s, varargin{:}); endif alpha0 = (t'*s) / b_bot; alpha1 = (t'*s_old) / b_bot_old; p_temp = p; q_temp = q; p = s - alpha0*p - alpha1*p_old; q = t - alpha0*q - alpha1*q_old; s_old = s; p_old = p_temp; q_old = q_temp; b_bot_old = b_bot; resvec(iter) = abs (norm (r)); iter++; endwhile flag = 0; relres = resvec(iter-1) ./ resvec(1); iter -= 2; if (iter >= maxit-2) flag = 1; if (nargout < 2) warning ("pcr: maximum number of iterations (%d) reached\n", iter); warning ("the initial residual norm was reduced %g times.\n", 1.0/relres); endif elseif (nargout < 2 && ! breakdown) fprintf (stderr, "pcr: converged in %d iterations. \n", iter); fprintf (stderr, "the initial residual norm was reduced %g times.\n", 1.0 / relres); endif if (breakdown) flag = 3; if (nargout < 2) warning ("pcr: breakdown occurred:\n"); warning ("system matrix singular or preconditioner indefinite?\n"); endif endif endfunction %!demo %! %! # Simplest usage of PCR (see also 'help pcr') %! %! N = 20; %! A = diag(linspace(-3.1,3,N)); b = rand(N,1); y = A\b; #y is the true solution %! x = pcr(A,b); %! printf('The solution relative error is %g\n', norm(x-y)/norm(y)); %! %! # You shouldn't be afraid if PCR issues some warning messages in this %! # example: watch out in the second example, why it takes N iterations %! # of PCR to converge to (a very accurate, by the way) solution %!demo %! %! # Full output from PCR %! # We use this output to plot the convergence history %! %! N = 20; %! A = diag(linspace(-3.1,30,N)); b = rand(N,1); X = A\b; #X is the true solution %! [x, flag, relres, iter, resvec] = pcr(A,b); %! printf('The solution relative error is %g\n', norm(x-X)/norm(X)); %! title('Convergence history'); xlabel('Iteration'); ylabel('log(||b-Ax||/||b||)'); %! semilogy([0:iter],resvec/resvec(1),'o-g;relative residual;'); %!demo %! %! # Full output from PCR %! # We use indefinite matrix based on the Hilbert matrix, with one %! # strongly negative eigenvalue %! # Hilbert matrix is extremely ill conditioned, so is ours, %! # and that's why PCR WILL have problems %! %! N = 10; %! A = hilb(N); A(1,1)=-A(1,1); b = rand(N,1); X = A\b; #X is the true solution %! printf('Condition number of A is %g\n', cond(A)); %! [x, flag, relres, iter, resvec] = pcr(A,b,[],200); %! if (flag == 3) %! printf('PCR breakdown. System matrix is [close to] singular\n'); %! end %! title('Convergence history'); xlabel('Iteration'); ylabel('log(||b-Ax||)'); %! semilogy([0:iter],resvec,'o-g;absolute residual;'); %!demo %! %! # Full output from PCR %! # We use an indefinite matrix based on the 1-D Laplacian matrix for A, %! # and here we have cond(A) = O(N^2) %! # That's the reason we need some preconditioner; here we take %! # a very simple and not powerful Jacobi preconditioner, %! # which is the diagonal of A %! %! # Note that we use here indefinite preconditioners! %! %! N = 100; %! A = zeros(N,N); %! for i=1:N-1 # form 1-D Laplacian matrix %! A(i:i+1,i:i+1) = [2 -1; -1 2]; %! endfor %! A = [A, zeros(size(A)); zeros(size(A)), -A]; %! b = rand(2*N,1); X = A\b; #X is the true solution %! maxit = 80; %! printf('System condition number is %g\n',cond(A)); %! # No preconditioner: the convergence is very slow! %! %! [x, flag, relres, iter, resvec] = pcr(A,b,[],maxit); %! title('Convergence history'); xlabel('Iteration'); ylabel('log(||b-Ax||)'); %! semilogy([0:iter],resvec,'o-g;NO preconditioning: absolute residual;'); %! %! pause(1); %! # Test Jacobi preconditioner: it will not help much!!! %! %! M = diag(diag(A)); # Jacobi preconditioner %! [x, flag, relres, iter, resvec] = pcr(A,b,[],maxit,M); %! hold on; %! semilogy([0:iter],resvec,'o-r;JACOBI preconditioner: absolute residual;'); %! %! pause(1); %! # Test nonoverlapping block Jacobi preconditioner: this one should give %! # some convergence speedup! %! %! M = zeros(N,N);k=4; %! for i=1:k:N # get k x k diagonal blocks of A %! M(i:i+k-1,i:i+k-1) = A(i:i+k-1,i:i+k-1); %! endfor %! M = [M, zeros(size(M)); zeros(size(M)), -M]; %! [x, flag, relres, iter, resvec] = pcr(A,b,[],maxit,M); %! semilogy([0:iter],resvec,'o-b;BLOCK JACOBI preconditioner: absolute residual;'); %! hold off; %!test %! %! #solve small indefinite diagonal system %! %! N = 10; %! A = diag(linspace(-10.1,10,N)); b = ones(N,1); X = A\b; #X is the true solution %! [x, flag] = pcr(A,b,[],N+1); %! assert(norm(x-X)/norm(X)<1e-10); %! assert(flag,0); %! %!test %! %! #solve tridiagonal system, do not converge in default 20 iterations %! #should perform max allowable default number of iterations %! %! N = 100; %! A = zeros(N,N); %! for i=1:N-1 # form 1-D Laplacian matrix %! A(i:i+1,i:i+1) = [2 -1; -1 2]; %! endfor %! b = ones(N,1); X = A\b; #X is the true solution %! [x, flag, relres, iter, resvec] = pcr(A,b,1e-12); %! assert(flag,1); %! assert(relres>0.6); %! assert(iter,20); %! %!test %! %! #solve tridiagonal system with 'prefect' preconditioner %! #converges in one iteration %! %! N = 100; %! A = zeros(N,N); %! for i=1:N-1 # form 1-D Laplacian matrix %! A(i:i+1,i:i+1) = [2 -1; -1 2]; %! endfor %! b = ones(N,1); X = A\b; #X is the true solution %! [x, flag, relres, iter] = pcr(A,b,[],[],A,b); %! assert(norm(x-X)/norm(X)<1e-6); %! assert(relres<1e-6); %! assert(flag,0); %! assert(iter,1); #should converge in one iteration %!