Mercurial > hg > octave-lyh
view scripts/sparse/svds.m @ 8920:eb63fbe60fab
update copyright notices
author | John W. Eaton <jwe@octave.org> |
---|---|
date | Sat, 07 Mar 2009 10:41:27 -0500 |
parents | 492801cd65eb |
children | 1bf0ce0930be |
line wrap: on
line source
## Copyright (C) 2006, 2008, 2009 David Bateman ## ## This program is free software; you can redistribute it and/or modify ## it under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 2 of the License, or ## (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, ## but WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ## GNU General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; If not, see <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {@var{s} =} svds (@var{a}) ## @deftypefnx {Function File} {@var{s} =} svds (@var{a}, @var{k}) ## @deftypefnx {Function File} {@var{s} =} svds (@var{a}, @var{k}, @var{sigma}) ## @deftypefnx {Function File} {@var{s} =} svds (@var{a}, @var{k}, @var{sigma}, @var{opts}) ## @deftypefnx {Function File} {[@var{u}, @var{s}, @var{v}, @var{flag}] =} svds (@dots{}) ## ## Find a few singular values of the matrix @var{a}. The singular values ## are calculated using ## ## @example ## @group ## [@var{m}, @var{n}] = size(@var{a}) ## @var{s} = eigs([sparse(@var{m}, @var{m}), @var{a}; @dots{} ## @var{a}', sparse(@var{n}, @var{n})]) ## @end group ## @end example ## ## The eigenvalues returned by @code{eigs} correspond to the singular ## values of @var{a}. The number of singular values to calculate is given ## by @var{k}, whose default value is 6. ## ## The argument @var{sigma} can be used to specify which singular values ## to find. @var{sigma} can be either the string 'L', the default, in ## which case the largest singular values of @var{a} are found. Otherwise ## @var{sigma} should be a real scalar, in which case the singular values ## closest to @var{sigma} are found. Note that for relatively small values ## of @var{sigma}, there is the chance that the requested number of singular ## values are not returned. In that case @var{sigma} should be increased. ## ## If @var{opts} is given, then it is a structure that defines options ## that @code{svds} will pass to @var{eigs}. The possible fields of this ## structure are therefore determined by @code{eigs}. By default three ## fields of this structure are set by @code{svds}. ## ## @table @code ## @item tol ## The required convergence tolerance for the singular values. @code{eigs} ## is passed @var{tol} divided by @code{sqrt(2)}. The default value is ## 1e-10. ## ## @item maxit ## The maximum number of iterations. The defaut is 300. ## ## @item disp ## The level of diagnostic printout. If @code{disp} is 0 then there is no ## printout. The default value is 0. ## @end table ## ## If more than one output argument is given, then @code{svds} also ## calculates the left and right singular vectors of @var{a}. @var{flag} ## is used to signal the convergence of @code{svds}. If @code{svds} ## converges to the desired tolerance, then @var{flag} given by ## ## @example ## @group ## norm (@var{a} * @var{v} - @var{u} * @var{s}, 1) <= @dots{} ## @var{tol} * norm (@var{a}, 1) ## @end group ## @end example ## ## will be zero. ## @end deftypefn ## @seealso{eigs} function [u, s, v, flag] = svds (a, k, sigma, opts) persistent root2 = sqrt (2); if (nargin < 1 || nargin > 4) print_usage (); endif if (nargin < 4) opts.tol = 1e-10 / root2; opts.disp = 0; opts.maxit = 300; else if (!isstruct (opts)) error ("svds: opts must be a structure"); endif if (!isfield (opts, "tol")) opts.tol = 1e-10 / root2; endif endif if (nargin < 3 || strcmp (sigma, "L")) if (isreal (a)) sigma = "LA"; else sigma = "LR"; endif elseif (isscalar (sigma) && isreal (sigma)) if (sigma < 0) error ("svds: sigma must be a positive real value"); endif else error ("svds: sigma must be a positive real value or the string 'L'"); endif max_a = max (abs (a(:))); if (max_a == 0) u = eye (m, k); s = zeros (k, k); v = eye (n, k); else [m, n] = size (a); if (nargin < 2) k = min ([6, m, n]); else k = min ([k, m, n]); endif ## Scale everything by the 1-norm to make things more stable. b = a / max_a; b_opts = opts; b_opts.tol = opts.tol / max_a; b_sigma = sigma; if (!ischar (b_sigma)) b_sigma = b_sigma / max_a; endif if (!ischar (b_sigma) && b_sigma == 0) ## The eigenvalues returns by eigs are symmetric about 0. As we ## are only interested in the positive eigenvalues, we have to ## double k. If sigma is smaller than the smallest singular value ## this can also be an issue. However, we'd like to avoid double ## k for all scalar value of sigma... [V, s, flag] = eigs ([sparse(m,m), b; b', sparse(n,n)], 2 * k, b_sigma, b_opts); else [V, s, flag] = eigs ([sparse(m,m), b; b', sparse(n,n)], k, b_sigma, b_opts); endif s = diag (s); if (ischar (sigma)) norma = max (s); else norma = normest (a); endif V = root2 * V; u = V(1:m,:); v = V(m+1:end,:); ## We wish to exclude all eigenvalues that are less than zero as these ## are artifacts of the way the matrix passed to eigs is formed. There ## is also the possibility that the value of sigma chosen is exactly ## a singular value, and in that case we're dead!! So have to rely on ## the warning from eigs. We exclude the singular values which are ## less than or equal to zero to within some tolerance scaled by the ## norm since if we don't we might end up with too many singular ## values. What is appropriate for the tolerance? tol = norma * opts.tol; ind = find(s > tol); if (length (ind) < k) ## Find the zero eigenvalues of B, Ignore the eigenvalues that are ## nominally negative. zind = find (abs (s) <= tol); p = min (length (zind), k - length (ind)); ind = [ind; zind(1:p)]; elseif (length (ind) > k) ind = ind(1:k); endif u = u(:,ind); s = s(ind); v = v(:,ind); if (length (s) < k) warning ("returning fewer singular values than requested"); if (!ischar (sigma)) warning ("try increasing the value of sigma"); endif endif s = s * max_a; endif if (nargout < 2) u = s; else s = diag(s); if (nargout > 3) flag = norm (a*v - u*s, 1) > root2 * opts.tol * norm (a, 1); endif endif endfunction %!shared n, k, a, u, s, v, opts %! n = 100; %! k = 7; %! a = sparse([3:n,1:n,1:(n-2)],[1:(n-2),1:n,3:n],[ones(1,n-2),0.4*n*ones(1,n),ones(1,n-2)]); %! %%a = sparse([3:n,1:n,1:(n-2)],[1:(n-2),1:n,3:n],[ones(1,n-2),1:n,-ones(1,n-2)]); %! [u,s,v] = svd(full(a)); %! s = diag(s); %! [dum, idx] = sort(abs(s)); %! s = s(idx); %! u = u(:,idx); %! v = v(:,idx); %! randn('state',42) %!testif HAVE_ARPACK %! [u2,s2,v2,flag] = svds(a,k); %! s2 = diag(s2); %! assert(flag,!1); %! assert(s(end:-1:end-k+1), s2, 1e-10); %!testif HAVE_ARPACK %! [u2,s2,v2,flag] = svds(a,k,0); %! s2 = diag(s2); %! assert(flag,!1); %! assert(s(k:-1:1), s2, 1e-10); %!testif HAVE_ARPACK %! idx = floor(n/2); %! % Don't put sigma right on a singular value or there are convergence %! sigma = 0.99*s(idx) + 0.01*s(idx+1); %! [u2,s2,v2,flag] = svds(a,k,sigma); %! s2 = diag(s2); %! assert(flag,!1); %! assert(s((idx+floor(k/2)):-1:(idx-floor(k/2))), s2, 1e-10);