Mercurial > hg > octave-lyh
view scripts/specfun/legendre.m @ 8920:eb63fbe60fab
update copyright notices
author | John W. Eaton <jwe@octave.org> |
---|---|
date | Sat, 07 Mar 2009 10:41:27 -0500 |
parents | e07e93c04080 |
children | 2e9af3363669 |
line wrap: on
line source
## Copyright (C) 2000, 2006, 2007, 2009 Kai Habel ## Copyright (C) 2008 Marco Caliari ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {@var{l} =} legendre (@var{n}, @var{x}) ## @deftypefnx {Function File} {@var{l} =} legendre (@var{n}, @var{x}, @var{normalization}) ## Compute the Legendre function of degree @var{n} and order ## @var{m} = 0 ... N. The optional argument, @var{normalization}, ## may be one of @code{"unnorm"}, @code{"sch"}, or @code{"norm"}. ## The default is @code{"unnorm"}. The value of @var{n} must be a ## non-negative scalar integer. ## ## If the optional argument @var{normalization} is missing or is ## @code{"unnorm"}, compute the Legendre function of degree @var{n} and ## order @var{m} and return all values for @var{m} = 0 @dots{} @var{n}. ## The return value has one dimension more than @var{x}. ## ## The Legendre Function of degree @var{n} and order @var{m}: ## ## @example ## @group ## m m 2 m/2 d^m ## P(x) = (-1) * (1-x ) * ---- P (x) ## n dx^m n ## @end group ## @end example ## ## @noindent ## with Legendre polynomial of degree @var{n}: ## ## @example ## @group ## 1 d^n 2 n ## P (x) = ------ [----(x - 1) ] ## n 2^n n! dx^n ## @end group ## @end example ## ## @noindent ## @code{legendre (3, [-1.0, -0.9, -0.8])} returns the matrix: ## ## @example ## @group ## x | -1.0 | -0.9 | -0.8 ## ------------------------------------ ## m=0 | -1.00000 | -0.47250 | -0.08000 ## m=1 | 0.00000 | -1.99420 | -1.98000 ## m=2 | 0.00000 | -2.56500 | -4.32000 ## m=3 | 0.00000 | -1.24229 | -3.24000 ## @end group ## @end example ## ## If the optional argument @code{normalization} is @code{"sch"}, ## compute the Schmidt semi-normalized associated Legendre function. ## The Schmidt semi-normalized associated Legendre function is related ## to the unnormalized Legendre functions by the following: ## ## For Legendre functions of degree n and order 0: ## ## @example ## @group ## 0 0 ## SP (x) = P (x) ## n n ## @end group ## @end example ## ## For Legendre functions of degree n and order m: ## ## @example ## @group ## m m m 2(n-m)! 0.5 ## SP (x) = P (x) * (-1) * [-------] ## n n (n+m)! ## @end group ## @end example ## ## If the optional argument @var{normalization} is @code{"norm"}, ## compute the fully normalized associated Legendre function. ## The fully normalized associated Legendre function is related ## to the unnormalized Legendre functions by the following: ## ## For Legendre functions of degree @var{n} and order @var{m} ## ## @example ## @group ## m m m (n+0.5)(n-m)! 0.5 ## NP (x) = P (x) * (-1) * [-------------] ## n n (n+m)! ## @end group ## @end example ## @end deftypefn ## Author: Marco Caliari <marco.caliari@univr.it> function retval = legendre (n, x, normalization) persistent warned_overflow = false; if (nargin < 2 || nargin > 3) print_usage (); endif if (nargin == 3) normalization = lower (normalization); else normalization = "unnorm"; endif if (! isscalar (n) || n < 0 || n != fix (n)) error ("legendre: n must be a non-negative scalar integer"); endif if (! isvector (x) || any (x < -1 || x > 1)) error ("legendre: x must be vector in range -1 <= x <= 1"); endif switch (normalization) case "norm" scale = sqrt (n+0.5); case "sch" scale = sqrt (2); case "unnorm" scale = 1; otherwise error ("legendre: expecting normalization option to be \"norm\", \"sch\", or \"unnorm\""); endswitch scale = scale * ones (1, numel (x)); ## Based on the recurrence relation below ## m m m ## (n-m+1) * P (x) = (2*n+1)*x*P (x) - (n+1)*P (x) ## n+1 n n-1 ## http://en.wikipedia.org/wiki/Associated_Legendre_function overflow = false; for m = 1:n lpm1 = scale; lpm2 = (2*m-1) .* x .* scale; lpm3 = lpm2; for k = m+1:n lpm3a = (2*k-1) .* x .* lpm2; lpm3b = (k+m-2) .* lpm1; lpm3 = (lpm3a - lpm3b)/(k-m+1); lpm1 = lpm2; lpm2 = lpm3; if (! warned_overflow) if (any (abs (lpm3a) > realmax) || any (abs (lpm3b) > realmax) || any (abs (lpm3) > realmax)) overflow = true; endif endif endfor retval(m,:) = lpm3; if (strcmp (normalization, "unnorm")) scale = -scale * (2*m-1); else ## normalization == "sch" or normalization == "norm" scale = scale / sqrt ((n-m+1)*(n+m))*(2*m-1); endif scale = scale .* sqrt(1-x.^2); endfor retval(n+1,:) = scale; if (strcmp (normalization, "sch")) retval(1,:) = retval(1,:) / sqrt (2); endif if (overflow && ! warned_overflow) warning ("legendre: overflow - results may be unstable for high orders"); warned_overflow = true; endif endfunction %!test %! result = legendre (3, [-1.0 -0.9 -0.8]); %! expected = [ %! -1.00000 -0.47250 -0.08000 %! 0.00000 -1.99420 -1.98000 %! 0.00000 -2.56500 -4.32000 %! 0.00000 -1.24229 -3.24000 %! ]; %! assert (result, expected, 1e-5); %!test %! result = legendre (3, [-1.0 -0.9 -0.8], "sch"); %! expected = [ %! -1.00000 -0.47250 -0.08000 %! 0.00000 0.81413 0.80833 %! -0.00000 -0.33114 -0.55771 %! 0.00000 0.06547 0.17076 %! ]; %! assert (result, expected, 1e-5); %!test %! result = legendre (3, [-1.0 -0.9 -0.8], "norm"); %! expected = [ %! -1.87083 -0.88397 -0.14967 %! 0.00000 1.07699 1.06932 %! -0.00000 -0.43806 -0.73778 %! 0.00000 0.08661 0.22590 %! ]; %! assert (result, expected, 1e-5); %!test %! result = legendre (151, 0); %! ## Don't compare to "-Inf" since it would fail on 64 bit systems. %! assert (result(end) < -1.7976e308 && all (isfinite (result(1:end-1)))); %!test %! result = legendre (150, 0); %! ## This agrees with Matlab's result. %! assert (result(end), 3.7532741115719e+306, 0.0000000000001e+306) %!test %! result = legendre (0, 0:0.1:1); %! assert (result, ones(1,11))