Mercurial > hg > octave-lyh
view scripts/statistics/base/mode.m @ 8920:eb63fbe60fab
update copyright notices
author | John W. Eaton <jwe@octave.org> |
---|---|
date | Sat, 07 Mar 2009 10:41:27 -0500 |
parents | 704b7a1098d0 |
children | 1bf0ce0930be |
line wrap: on
line source
## Copyright (C) 2007, 2008 David Bateman ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {[@var{m}, @var{f}, @var{c}] =} mode (@var{x}, @var{dim}) ## Count the most frequently appearing value. @code{mode} counts the ## frequency along the first non-singleton dimension and if two or more ## values have te same frequency returns the smallest of the two in ## @var{m}. The dimension along which to count can be specified by the ## @var{dim} parameter. ## ## The variable @var{f} counts the frequency of each of the most frequently ## occurring elements. The cell array @var{c} contains all of the elements ## with the maximum frequency . ## @end deftypefn function [m, f, c] = mode (x, dim) if (nargin < 1 || nargin > 2) print_usage (); endif nd = ndims (x); sz = size (x); if (nargin != 2) ## Find the first non-singleton dimension. dim = 1; while (dim < nd + 1 && sz(dim) == 1) dim = dim + 1; endwhile if (dim > nd) dim = 1; endif else if (! (isscalar (dim) && dim == round (dim)) && dim > 0 && dim < (nd + 1)) error ("mode: dim must be an integer and valid dimension"); endif endif sz2 = sz; sz2 (dim) = 1; sz3 = ones (1, nd); sz3 (dim) = sz (dim); if (issparse (x)) t2 = sparse (sz(1), sz(2)); else t2 = zeros (sz); endif if (dim != 1) perm = [dim, 1:dim-1, dim+1:nd]; t2 = permute (t2, perm); endif xs = sort (x, dim); t = cat (dim, true (sz2), diff (xs, 1, dim) != 0); if (dim != 1) t2 (permute (t != 0, perm)) = diff ([find(permute (t, perm))(:); prod(sz)+1]); f = max (ipermute (t2, perm), [], dim); xs = permute (xs, perm); else t2 (t) = diff ([find(t)(:); prod(sz)+1]); f = max (t2, [], dim); endif c = cell (sz2); if (issparse (x)) m = sparse (sz2(1), sz2(2)); else m = zeros (sz2); endif for i = 1 : prod (sz2) c{i} = xs (t2 (:, i) == f(i), i); m (i) = c{i}(1); endfor endfunction %!test %! [m, f, c] = mode (toeplitz (1:5)); %! assert (m, [1,2,2,2,1]); %! assert (f, [1,2,2,2,1]); %! assert (c, {[1;2;3;4;5],[2],[2;3],[2],[1;2;3;4;5]}); %!test %! [m, f, c] = mode (toeplitz (1:5), 2); %! assert (m, [1;2;2;2;1]); %! assert (f, [1;2;2;2;1]); %! assert (c, {[1;2;3;4;5];[2];[2;3];[2];[1;2;3;4;5]}); %!test %! a = sprandn (32, 32, 0.05); %! [m, f, c] = mode (a); %! [m2, f2, c2] = mode (full (a)); %! assert (m, sparse (m2)); %! assert (f, sparse (f2)); %! assert (c, cellfun (@(x) sparse (0), c2, 'UniformOutput', false)); %!assert(mode([2,3,1,2,3,4],1),[2,3,1,2,3,4]) %!assert(mode([2,3,1,2,3,4],2),2) %!assert(mode([2,3,1,2,3,4]),2) %!assert(mode([2;3;1;2;3;4],1),2) %!assert(mode([2;3;1;2;3;4],2),[2;3;1;2;3;4]) %!assert(mode([2;3;1;2;3;4]),2) %!shared x %! x(:,:,1) = toeplitz (1:3); %! x(:,:,2) = circshift (toeplitz (1:3), 1); %! x(:,:,3) = circshift (toeplitz (1:3), 2); %!test %! [m, f, c] = mode (x, 1); %! assert (reshape (m, [3, 3]), [1 1 1; 2 2 2; 1 1 1]) %! assert (reshape (f, [3, 3]), [1 1 1; 2 2 2; 1 1 1]) %! c = reshape (c, [3, 3]); %! assert (c{1}, [1; 2; 3]) %! assert (c{2}, 2) %! assert (c{3}, [1; 2; 3]) %!test %! [m, f, c] = mode (x, 2); %! assert (reshape (m, [3, 3]), [1 1 2; 2 1 1; 1 2 1]) %! assert (reshape (f, [3, 3]), [1 1 2; 2 1 1; 1 2 1]) %! c = reshape (c, [3, 3]); %! assert (c{1}, [1; 2; 3]) %! assert (c{2}, 2) %! assert (c{3}, [1; 2; 3]) %!test %! [m, f, c] = mode (x, 3); %! assert (reshape (m, [3, 3]), [1 2 1; 1 2 1; 1 2 1]) %! assert (reshape (f, [3, 3]), [1 2 1; 1 2 1; 1 2 1]) %! c = reshape (c, [3, 3]); %! assert (c{1}, [1; 2; 3]) %! assert (c{2}, [1; 2; 3]) %! assert (c{3}, [1; 2; 3])