Mercurial > hg > octave-lyh
view src/DLD-FUNCTIONS/kron.cc @ 8920:eb63fbe60fab
update copyright notices
author | John W. Eaton <jwe@octave.org> |
---|---|
date | Sat, 07 Mar 2009 10:41:27 -0500 |
parents | 82be108cc558 |
children | 923c7cb7f13f |
line wrap: on
line source
/* Copyright (C) 2002, 2005, 2006, 2007, 2008 John W. Eaton This file is part of Octave. Octave is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. Octave is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Octave; see the file COPYING. If not, see <http://www.gnu.org/licenses/>. */ // Author: Paul Kienzle <pkienzle@users.sf.net> #ifdef HAVE_CONFIG_H #include <config.h> #endif #include "dMatrix.h" #include "CMatrix.h" #include "quit.h" #include "defun-dld.h" #include "error.h" #include "oct-obj.h" #if !defined (CXX_NEW_FRIEND_TEMPLATE_DECL) extern void kron (const Array2<double>&, const Array2<double>&, Array2<double>&); extern void kron (const Array2<Complex>&, const Array2<Complex>&, Array2<Complex>&); extern void kron (const Array2<float>&, const Array2<float>&, Array2<float>&); extern void kron (const Array2<FlaotComplex>&, const Array2<FloatComplex>&, Array2<FloatComplex>&); #endif template <class T> void kron (const Array2<T>& A, const Array2<T>& B, Array2<T>& C) { C.resize (A.rows () * B.rows (), A.columns () * B.columns ()); octave_idx_type Ac, Ar, Cc, Cr; for (Ac = Cc = 0; Ac < A.columns (); Ac++, Cc += B.columns ()) for (Ar = Cr = 0; Ar < A.rows (); Ar++, Cr += B.rows ()) { const T v = A (Ar, Ac); for (octave_idx_type Bc = 0; Bc < B.columns (); Bc++) for (octave_idx_type Br = 0; Br < B.rows (); Br++) { OCTAVE_QUIT; C.xelem (Cr+Br, Cc+Bc) = v * B.elem (Br, Bc); } } } template void kron (const Array2<double>&, const Array2<double>&, Array2<double>&); template void kron (const Array2<Complex>&, const Array2<Complex>&, Array2<Complex>&); template void kron (const Array2<float>&, const Array2<float>&, Array2<float>&); template void kron (const Array2<FloatComplex>&, const Array2<FloatComplex>&, Array2<FloatComplex>&); #if !defined (CXX_NEW_FRIEND_TEMPLATE_DECL) extern void kron (const Sparse<double>&, const Sparse<double>&, Sparse<double>&); extern void kron (const Sparse<Complex>&, const Sparse<Complex>&, Sparse<Complex>&); #endif template <class T> void kron (const Sparse<T>& A, const Sparse<T>& B, Sparse<T>& C) { octave_idx_type idx = 0; C = Sparse<T> (A.rows () * B.rows (), A.columns () * B.columns (), A.nzmax () * B.nzmax ()); C.cidx (0) = 0; for (octave_idx_type Aj = 0; Aj < A.columns (); Aj++) for (octave_idx_type Bj = 0; Bj < B.columns (); Bj++) { for (octave_idx_type Ai = A.cidx (Aj); Ai < A.cidx (Aj+1); Ai++) { octave_idx_type Ci = A.ridx(Ai) * B.rows (); const T v = A.data (Ai); for (octave_idx_type Bi = B.cidx (Bj); Bi < B.cidx (Bj+1); Bi++) { OCTAVE_QUIT; C.data (idx) = v * B.data (Bi); C.ridx (idx++) = Ci + B.ridx (Bi); } } C.cidx (Aj * B.columns () + Bj + 1) = idx; } } template void kron (const Sparse<double>&, const Sparse<double>&, Sparse<double>&); template void kron (const Sparse<Complex>&, const Sparse<Complex>&, Sparse<Complex>&); DEFUN_DLD (kron, args, nargout, "-*- texinfo -*-\n\ @deftypefn {Loadable Function} {} kron (@var{a}, @var{b})\n\ Form the kronecker product of two matrices, defined block by block as\n\ \n\ @example\n\ x = [a(i, j) b]\n\ @end example\n\ \n\ For example,\n\ \n\ @example\n\ @group\n\ kron (1:4, ones (3, 1))\n\ @result{} 1 2 3 4\n\ 1 2 3 4\n\ 1 2 3 4\n\ @end group\n\ @end example\n\ @end deftypefn") { octave_value_list retval; int nargin = args.length (); if (nargin != 2 || nargout > 1) { print_usage (); } else if (args(0).is_sparse_type () || args(1).is_sparse_type ()) { if (args(0).is_complex_type () || args(1).is_complex_type ()) { SparseComplexMatrix a (args(0).sparse_complex_matrix_value()); SparseComplexMatrix b (args(1).sparse_complex_matrix_value()); if (! error_state) { SparseComplexMatrix c; kron (a, b, c); retval(0) = c; } } else { SparseMatrix a (args(0).sparse_matrix_value ()); SparseMatrix b (args(1).sparse_matrix_value ()); if (! error_state) { SparseMatrix c; kron (a, b, c); retval (0) = c; } } } else { if (args(0).is_single_type () || args(1).is_single_type ()) { if (args(0).is_complex_type () || args(1).is_complex_type ()) { FloatComplexMatrix a (args(0).float_complex_matrix_value()); FloatComplexMatrix b (args(1).float_complex_matrix_value()); if (! error_state) { FloatComplexMatrix c; kron (a, b, c); retval(0) = c; } } else { FloatMatrix a (args(0).float_matrix_value ()); FloatMatrix b (args(1).float_matrix_value ()); if (! error_state) { FloatMatrix c; kron (a, b, c); retval (0) = c; } } } else { if (args(0).is_complex_type () || args(1).is_complex_type ()) { ComplexMatrix a (args(0).complex_matrix_value()); ComplexMatrix b (args(1).complex_matrix_value()); if (! error_state) { ComplexMatrix c; kron (a, b, c); retval(0) = c; } } else { Matrix a (args(0).matrix_value ()); Matrix b (args(1).matrix_value ()); if (! error_state) { Matrix c; kron (a, b, c); retval (0) = c; } } } } return retval; }