Mercurial > hg > octave-lyh
view scripts/plot/tetramesh.m @ 17487:f0f4b524b6d0
maint: Correct indentation for several plot routines.
* scripts/plot/ellipsoid.m, scripts/plot/rose.m, scripts/plot/sphere.m,
scripts/plot/surfnorm.m: maint: Correct indentation for several plot routines.
author | Rik <rik@octave.org> |
---|---|
date | Wed, 25 Sep 2013 07:48:58 -0700 |
parents | bc924baa2c4e |
children |
line wrap: on
line source
## Copyright (C) 2012 Martin Helm ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {} tetramesh (@var{T}, @var{X}) ## @deftypefnx {Function File} {} tetramesh (@var{T}, @var{X}, @var{C}) ## @deftypefnx {Function File} {} tetramesh (@dots{}, @var{property}, @var{val}, @dots{}) ## @deftypefnx {Function File} {@var{h} =} tetramesh (@dots{}) ## Display the tetrahedrons defined in the m-by-4 matrix @var{T} as 3-D patches. ## ## @var{T} is typically the output of a Delaunay triangulation ## of a 3-D set of points. Every row of @var{T} contains four indices into ## the n-by-3 matrix @var{X} of the vertices of a tetrahedron. Every row in ## @var{X} represents one point in 3-D space. ## ## The vector @var{C} specifies the color of each tetrahedron as an index ## into the current colormap. The default value is 1:m where m is the number ## of tetrahedrons; the indices are scaled to map to the full range of the ## colormap. If there are more tetrahedrons than colors in the colormap then ## the values in @var{C} are cyclically repeated. ## ## Calling @code{tetramesh (@dots{}, "property", "value", @dots{})} passes all ## property/value pairs directly to the patch function as additional arguments. ## ## The optional return value @var{h} is a vector of patch handles where each ## handle represents one tetrahedron in the order given by @var{T}. ## A typical use case for @var{h} is to turn the respective patch ## @qcode{"visible"} property @qcode{"on"} or @qcode{"off"}. ## ## Type @code{demo tetramesh} to see examples on using @code{tetramesh}. ## @seealso{trimesh, delaunay3, delaunayn, patch} ## @end deftypefn ## Author: Martin Helm <martin@mhelm.de> function h = tetramesh (varargin) [reg, prop] = parseparams (varargin); if (length (reg) < 2 || length (reg) > 3) print_usage (); endif T = reg{1}; X = reg{2}; if (! ismatrix (T) || columns (T) != 4) error ("tetramesh: T must be a n-by-4 matrix"); endif if (! ismatrix (X) || columns (X) != 3) error ("tetramesh: X must be a n-by-3 matrix"); endif size_T = rows (T); colmap = colormap (); if (length (reg) < 3) size_colmap = rows (colmap); C = mod ((1:size_T)' - 1, size_colmap) + 1; if (size_T < size_colmap && size_T > 1) ## expand to the available range of colors C = floor ((C - 1) * (size_colmap - 1) / (size_T - 1)) + 1; endif else C = reg{3}; if (! isvector (C) || size_T != length (C)) error ("tetramesh: C must be a vector of the same length as T"); endif endif h = zeros (1, size_T); if (strcmp (graphics_toolkit (), "gnuplot")) ## tiny reduction of the tetrahedron size to help gnuplot by ## avoiding identical faces with different colors for i = 1:size_T [th, p] = __shrink__ ([1 2 3 4], X(T(i, :), :), 1 - 1e-7); hvec(i) = patch ("Faces", th, "Vertices", p, "FaceColor", colmap(C(i), :), prop{:}); endfor else for i = 1:size_T th = [1 2 3; 2 3 4; 3 4 1; 4 1 2]; hvec(i) = patch ("Faces", th, "Vertices", X(T(i, :), :), "FaceColor", colmap(C(i), :), prop{:}); endfor endif if (nargout > 0) h = hvec; endif endfunction ## shrink the tetrahedron relative to its center of gravity function [tri, p] = __shrink__ (T, X, sf) midpoint = repmat (sum (X(T, :), 1) / 4, 12, 1); p = [X([1 2 3], :); X([2 3 4], :); X([3 4 1], :); X([4 1 2], :)]; p = sf * (p - midpoint) + midpoint; tri = reshape (1:12, 3, 4)'; endfunction %!demo %! clf; %! d = [-1 1]; %! [x,y,z] = meshgrid (d, d, d); %! x = [x(:); 0]; %! y = [y(:); 0]; %! z = [z(:); 0]; %! tetra = delaunay3 (x, y, z); %! X = [x(:) y(:) z(:)]; %! colormap (jet (64)); %! h = tetramesh (tetra, X); %! set (h(1:2:end), 'Visible', 'off'); %! axis equal; %! view (30, 20); %! title ('Using jet (64), every other tetrahedron invisible'); %!demo %! clf; %! d = [-1 1]; %! [x,y,z] = meshgrid (d, d, d); %! x = [x(:); 0]; %! y = [y(:); 0]; %! z = [z(:); 0]; %! tetra = delaunay3 (x, y, z); %! X = [x(:) y(:) z(:)]; %! colormap (gray (256)); %! tetramesh (tetra, X, 21:20:241, 'EdgeColor', 'w'); %! axis equal; %! view (30, 20); %! title ('Using gray (256) and white edges');