Mercurial > hg > octave-lyh
view src/DLD-FUNCTIONS/sparse.cc @ 7515:f3c00dc0912b
Eliminate the rest of the dispatched sparse functions
author | David Bateman <dbateman@free.fr> |
---|---|
date | Fri, 22 Feb 2008 15:50:51 +0100 |
parents | f5005d9510f4 |
children | 8a42498edb30 |
line wrap: on
line source
/* Copyright (C) 2004, 2005, 2006, 2007 David Bateman Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004 Andy Adler This file is part of Octave. Octave is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. Octave is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Octave; see the file COPYING. If not, see <http://www.gnu.org/licenses/>. */ #ifdef HAVE_CONFIG_H #include <config.h> #endif #include <cstdlib> #include <string> #include "variables.h" #include "utils.h" #include "pager.h" #include "defun-dld.h" #include "gripes.h" #include "quit.h" #include "ov-re-sparse.h" #include "ov-cx-sparse.h" #include "ov-bool-sparse.h" DEFUN_DLD (issparse, args, , "-*- texinfo -*-\n\ @deftypefn {Loadable Function} {} issparse (@var{expr})\n\ Return 1 if the value of the expression @var{expr} is a sparse matrix.\n\ @end deftypefn") { if (args.length() != 1) { print_usage (); return octave_value (); } else return octave_value (args(0).is_sparse_type ()); } DEFUN_DLD (sparse, args, , "-*- texinfo -*-\n\ @deftypefn {Loadable Function} {@var{s} =} sparse (@var{a})\n\ Create a sparse matrix from the full matrix @var{a}.\n\ is forced back to a full matrix is resulting matrix is sparse\n\ \n\ @deftypefnx {Loadable Function} {@var{s} =} sparse (@var{i}, @var{j}, @var{sv}, @var{m}, @var{n}, @var{nzmax})\n\ Create a sparse matrix given integer index vectors @var{i} and @var{j},\n\ a 1-by-@code{nnz} vector of real of complex values @var{sv}, overall\n\ dimensions @var{m} and @var{n} of the sparse matrix. The argument\n\ @code{nzmax} is ignored but accepted for compatibility with @sc{Matlab}.\n\ \n\ @strong{Note}: if multiple values are specified with the same\n\ @var{i}, @var{j} indices, the corresponding values in @var{s} will\n\ be added.\n\ \n\ The following are all equivalent:\n\ \n\ @example\n\ @group\n\ s = sparse (i, j, s, m, n)\n\ s = sparse (i, j, s, m, n, \"summation\")\n\ s = sparse (i, j, s, m, n, \"sum\")\n\ @end group\n\ @end example\n\ \n\ @deftypefnx {Loadable Function} {@var{s} =} sparse (@var{i}, @var{j}, @var{s}, @var{m}, @var{n}, \"unique\")\n\ Same as above, except that if more than two values are specified for the\n\ same @var{i}, @var{j} indices, the last specified value will be used.\n\ \n\ @deftypefnx {Loadable Function} {@var{s} =} sparse (@var{i}, @var{j}, @var{sv})\n\ Uses @code{@var{m} = max (@var{i})}, @code{@var{n} = max (@var{j})}\n\ \n\ @deftypefnx {Loadable Function} {@var{s} =} sparse (@var{m}, @var{n})\n\ Equivalent to @code{sparse ([], [], [], @var{m}, @var{n}, 0)}\n\ \n\ If any of @var{sv}, @var{i} or @var{j} are scalars, they are expanded\n\ to have a common size.\n\ @seealso{full}\n\ @end deftypefn") { octave_value retval; // WARNING: This function should always use constructions like // retval = new octave_sparse_matrix (sm); // To avoid calling the maybe_mutate function. This is the only // function that should not call maybe_mutate int nargin= args.length(); if (nargin < 1 || (nargin == 4 && !args(3).is_string ()) || nargin > 6) { print_usage (); return retval; } bool use_complex = false; bool use_bool = false; if (nargin > 2) { use_complex= args(2).is_complex_type(); use_bool = args(2).is_bool_type (); } else { use_complex= args(0).is_complex_type(); use_bool = args(0).is_bool_type (); } if (nargin == 1) { octave_value arg = args (0); if (arg.is_sparse_type ()) { if (use_complex) { SparseComplexMatrix sm = arg.sparse_complex_matrix_value (); retval = new octave_sparse_complex_matrix (sm); } else if (use_bool) { SparseBoolMatrix sm = arg.sparse_bool_matrix_value (); retval = new octave_sparse_bool_matrix (sm); } else { SparseMatrix sm = arg.sparse_matrix_value (); retval = new octave_sparse_matrix (sm); } } else { if (use_complex) { SparseComplexMatrix sm (args (0).complex_matrix_value ()); if (error_state) return retval; retval = new octave_sparse_complex_matrix (sm); } else if (use_bool) { SparseBoolMatrix sm (args (0).bool_matrix_value ()); if (error_state) return retval; retval = new octave_sparse_bool_matrix (sm); } else { SparseMatrix sm (args (0).matrix_value ()); if (error_state) return retval; retval = new octave_sparse_matrix (sm); } } } else { octave_idx_type m = 1, n = 1; if (nargin == 2) { if (args(0).numel () == 1 && args(1).numel () == 1) { m = args(0).int_value(); n = args(1).int_value(); if (error_state) return retval; if (use_complex) retval = new octave_sparse_complex_matrix (SparseComplexMatrix (m, n)); else if (use_bool) retval = new octave_sparse_bool_matrix (SparseBoolMatrix (m, n)); else retval = new octave_sparse_matrix (SparseMatrix (m, n)); } else error ("sparse: expecting scalar values"); } else { if (args(0).is_empty () || args (1).is_empty () || args(2).is_empty ()) { if (nargin > 4) { m = args(3).int_value(); n = args(4).int_value(); } if (use_bool) retval = new octave_sparse_bool_matrix (SparseBoolMatrix (m, n)); else retval = new octave_sparse_matrix (SparseMatrix (m, n)); } else { // // I use this clumsy construction so that we can use // any orientation of args ColumnVector ridxA = ColumnVector (args(0).vector_value (false, true)); ColumnVector cidxA = ColumnVector (args(1).vector_value (false, true)); ColumnVector coefA; boolNDArray coefAB; ComplexColumnVector coefAC; bool assemble_do_sum = true; // this is the default in matlab6 if (use_complex) { if (args(2).is_empty ()) coefAC = ComplexColumnVector (0); else coefAC = ComplexColumnVector (args(2).complex_vector_value (false, true)); } else if (use_bool) { if (args(2).is_empty ()) coefAB = boolNDArray (dim_vector (1, 0)); else coefAB = args(2).bool_array_value (); dim_vector AB_dims = coefAB.dims (); if (AB_dims.length() > 2 || (AB_dims(0) != 1 && AB_dims(1) != 1)) error ("sparse: vector arguments required"); } else if (args(2).is_empty ()) coefA = ColumnVector (0); else coefA = ColumnVector (args(2).vector_value (false, true)); if (error_state) return retval; // Confirm that i,j,s all have the same number of elements octave_idx_type ns; if (use_complex) ns = coefAC.length(); else if (use_bool) ns = coefAB.length(); else ns = coefA.length(); octave_idx_type ni = ridxA.length(); octave_idx_type nj = cidxA.length(); octave_idx_type nnz = (ni > nj ? ni : nj); if ((ns != 1 && ns != nnz) || (ni != 1 && ni != nnz) || (nj != 1 && nj != nnz)) { error ("sparse i, j and s must have the same length"); return retval; } if (nargin == 3 || nargin == 4) { m = static_cast<octave_idx_type> (ridxA.max()); n = static_cast<octave_idx_type> (cidxA.max()); // if args(3) is not string, then ignore the value // otherwise check for summation or unique if (nargin == 4 && args(3).is_string()) { std::string vv= args(3).string_value(); if (error_state) return retval; if ( vv == "summation" || vv == "sum" ) assemble_do_sum = true; else if ( vv == "unique" ) assemble_do_sum = false; else { error("sparse repeat flag must be 'sum' or 'unique'"); return retval; } } } else { m = args(3).int_value(); n = args(4).int_value(); if (error_state) return retval; // if args(5) is not string, then ignore the value // otherwise check for summation or unique if (nargin >= 6 && args(5).is_string()) { std::string vv= args(5).string_value(); if (error_state) return retval; if ( vv == "summation" || vv == "sum" ) assemble_do_sum = true; else if ( vv == "unique" ) assemble_do_sum = false; else { error("sparse repeat flag must be 'sum' or 'unique'"); return retval; } } } // Convert indexing to zero-indexing used internally ridxA -= 1.; cidxA -= 1.; if (use_complex) retval = new octave_sparse_complex_matrix (SparseComplexMatrix (coefAC, ridxA, cidxA, m, n, assemble_do_sum)); else if (use_bool) retval = new octave_sparse_bool_matrix (SparseBoolMatrix (coefAB, ridxA, cidxA, m, n, assemble_do_sum)); else retval = new octave_sparse_matrix (SparseMatrix (coefA, ridxA, cidxA, m, n, assemble_do_sum)); } } } return retval; } DEFUN_DLD (full, args, , "-*- texinfo -*-\n\ @deftypefn {Loadable Function} {@var{FM} =} full (@var{SM})\n\ returns a full storage matrix from a sparse one\n\ @seealso{sparse}\n\ @end deftypefn") { octave_value retval; if (args.length() < 1) { print_usage (); return retval; } if (args(0).is_sparse_type ()) { if (args(0).type_name () == "sparse matrix") retval = args(0).matrix_value (); else if (args(0).type_name () == "sparse complex matrix") retval = args(0).complex_matrix_value (); else if (args(0).type_name () == "sparse bool matrix") retval = args(0).bool_matrix_value (); } else if (args(0).is_real_type()) retval = args(0).matrix_value(); else if (args(0).is_complex_type()) retval = args(0).complex_matrix_value(); else gripe_wrong_type_arg ("full", args(0)); return retval; } /* ;;; Local Variables: *** ;;; mode: C++ *** ;;; End: *** */