Mercurial > hg > octave-lyh
view scripts/general/accumarray.m @ 14363:f3d52523cde1
Use Octave coding conventions in all m-file %!test blocks
* wavread.m, acosd.m, acot.m, acotd.m, acoth.m, acsc.m, acscd.m, acsch.m,
asec.m, asecd.m, asech.m, asind.m, atand.m, cosd.m, cot.m, cotd.m, coth.m,
csc.m, cscd.m, csch.m, sec.m, secd.m, sech.m, sind.m, tand.m, accumarray.m,
accumdim.m, bitcmp.m, bitget.m, bitset.m, blkdiag.m, cart2pol.m, cart2sph.m,
celldisp.m, chop.m, circshift.m, colon.m, common_size.m, cplxpair.m,
cumtrapz.m, curl.m, dblquad.m, deal.m, divergence.m, flipdim.m, fliplr.m,
flipud.m, genvarname.m, gradient.m, idivide.m, int2str.m, interp1.m,
interp1q.m, interp2.m, interp3.m, interpft.m, interpn.m, isa.m, isdir.m,
isequal.m, isequalwithequalnans.m, issquare.m, logspace.m, nargchk.m,
narginchk.m, nargoutchk.m, nextpow2.m, nthargout.m, num2str.m, pol2cart.m,
polyarea.m, postpad.m, prepad.m, profile.m, profshow.m, quadgk.m, quadv.m,
randi.m, rat.m, repmat.m, rot90.m, rotdim.m, shift.m, shiftdim.m, sph2cart.m,
structfun.m, trapz.m, triplequad.m, convhull.m, dsearch.m, dsearchn.m,
griddata3.m, griddatan.m, rectint.m, tsearchn.m, __makeinfo__.m, doc.m,
get_first_help_sentence.m, help.m, type.m, unimplemented.m, which.m, imread.m,
imwrite.m, dlmwrite.m, fileread.m, is_valid_file_id.m, strread.m, textread.m,
textscan.m, commutation_matrix.m, cond.m, condest.m, cross.m,
duplication_matrix.m, expm.m, housh.m, isdefinite.m, ishermitian.m,
issymmetric.m, logm.m, normest.m, null.m, onenormest.m, orth.m, planerot.m,
qzhess.m, rank.m, rref.m, trace.m, vech.m, ans.m, bincoeff.m, bug_report.m,
bzip2.m, comma.m, compare_versions.m, computer.m, edit.m, fileparts.m,
fullfile.m, getfield.m, gzip.m, info.m, inputname.m, isappdata.m, isdeployed.m,
ismac.m, ispc.m, isunix.m, list_primes.m, ls.m, mexext.m, namelengthmax.m,
news.m, orderfields.m, paren.m, recycle.m, rmappdata.m, semicolon.m,
setappdata.m, setfield.m, substruct.m, symvar.m, ver.m, version.m,
warning_ids.m, xor.m, fminbnd.m, fsolve.m, fzero.m, lsqnonneg.m, optimset.m,
pqpnonneg.m, sqp.m, matlabroot.m, __gnuplot_drawnow__.m,
__plt_get_axis_arg__.m, ancestor.m, cla.m, clf.m, close.m, colorbar.m,
colstyle.m, comet3.m, contourc.m, figure.m, gca.m, gcbf.m, gcbo.m, gcf.m,
ginput.m, graphics_toolkit.m, gtext.m, hggroup.m, hist.m, hold.m, isfigure.m,
ishghandle.m, ishold.m, isocolors.m, isonormals.m, isosurface.m, isprop.m,
legend.m, line.m, loglog.m, loglogerr.m, meshgrid.m, ndgrid.m, newplot.m,
orient.m, patch.m, plot3.m, plotyy.m, __print_parse_opts__.m, quiver3.m,
refreshdata.m, ribbon.m, semilogx.m, semilogxerr.m, semilogy.m, stem.m,
stem3.m, subplot.m, title.m, uigetfile.m, view.m, whitebg.m, compan.m, conv.m,
deconv.m, mkpp.m, mpoles.m, pchip.m, poly.m, polyaffine.m, polyder.m,
polyfit.m, polygcd.m, polyint.m, polyout.m, polyval.m, polyvalm.m, ppder.m,
ppint.m, ppjumps.m, ppval.m, residue.m, roots.m, spline.m, intersect.m,
ismember.m, powerset.m, setdiff.m, setxor.m, union.m, unique.m,
autoreg_matrix.m, bartlett.m, blackman.m, detrend.m, fftconv.m, fftfilt.m,
fftshift.m, freqz.m, hamming.m, hanning.m, ifftshift.m, sinc.m, sinetone.m,
sinewave.m, unwrap.m, bicg.m, bicgstab.m, gmres.m, gplot.m, nonzeros.m, pcg.m,
pcr.m, spaugment.m, spconvert.m, spdiags.m, speye.m, spfun.m, spones.m,
sprand.m, sprandsym.m, spstats.m, spy.m, svds.m, treelayout.m, bessel.m,
beta.m, betaln.m, factor.m, factorial.m, isprime.m, lcm.m, legendre.m,
nchoosek.m, nthroot.m, perms.m, pow2.m, primes.m, reallog.m, realpow.m,
realsqrt.m, hadamard.m, hankel.m, hilb.m, invhilb.m, magic.m, rosser.m,
vander.m, __finish__.m, center.m, cloglog.m, corr.m, cov.m, gls.m, histc.m,
iqr.m, kendall.m, kurtosis.m, logit.m, mahalanobis.m, mean.m, meansq.m,
median.m, mode.m, moment.m, ols.m, ppplot.m, prctile.m, probit.m, quantile.m,
range.m, ranks.m, run_count.m, runlength.m, skewness.m, spearman.m,
statistics.m, std.m, table.m, var.m, zscore.m, betacdf.m, betainv.m, betapdf.m,
betarnd.m, binocdf.m, binoinv.m, binopdf.m, binornd.m, cauchy_cdf.m,
cauchy_inv.m, cauchy_pdf.m, cauchy_rnd.m, chi2cdf.m, chi2inv.m, chi2pdf.m,
chi2rnd.m, discrete_cdf.m, discrete_inv.m, discrete_pdf.m, discrete_rnd.m,
empirical_cdf.m, empirical_inv.m, empirical_pdf.m, empirical_rnd.m, expcdf.m,
expinv.m, exppdf.m, exprnd.m, fcdf.m, finv.m, fpdf.m, frnd.m, gamcdf.m,
gaminv.m, gampdf.m, gamrnd.m, geocdf.m, geoinv.m, geopdf.m, geornd.m,
hygecdf.m, hygeinv.m, hygepdf.m, hygernd.m, kolmogorov_smirnov_cdf.m,
laplace_cdf.m, laplace_inv.m, laplace_pdf.m, laplace_rnd.m, logistic_cdf.m,
logistic_inv.m, logistic_pdf.m, logistic_rnd.m, logncdf.m, logninv.m,
lognpdf.m, lognrnd.m, nbincdf.m, nbininv.m, nbinpdf.m, nbinrnd.m, normcdf.m,
norminv.m, normpdf.m, normrnd.m, poisscdf.m, poissinv.m, poisspdf.m,
poissrnd.m, stdnormal_cdf.m, stdnormal_inv.m, stdnormal_pdf.m, stdnormal_rnd.m,
tcdf.m, tinv.m, tpdf.m, trnd.m, unidcdf.m, unidinv.m, unidpdf.m, unidrnd.m,
unifcdf.m, unifinv.m, unifpdf.m, unifrnd.m, wblcdf.m, wblinv.m, wblpdf.m,
wblrnd.m, kolmogorov_smirnov_test.m, kruskal_wallis_test.m, base2dec.m,
bin2dec.m, blanks.m, cstrcat.m, deblank.m, dec2base.m, dec2bin.m, dec2hex.m,
findstr.m, hex2dec.m, index.m, isletter.m, mat2str.m, rindex.m, str2num.m,
strcat.m, strjust.m, strmatch.m, strsplit.m, strtok.m, strtrim.m, strtrunc.m,
substr.m, validatestring.m, demo.m, example.m, fail.m, speed.m, addtodate.m,
asctime.m, clock.m, ctime.m, date.m, datenum.m, datetick.m, datevec.m,
eomday.m, etime.m, is_leap_year.m, now.m:
Use Octave coding conventions in all m-file %!test blocks
author | Rik <octave@nomad.inbox5.com> |
---|---|
date | Mon, 13 Feb 2012 07:29:44 -0800 |
parents | 4d917a6a858b |
children | b76f0740940e |
line wrap: on
line source
## Copyright (C) 2007-2012 David Bateman ## Copyright (C) 2009-2010 VZLU Prague ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {} accumarray (@var{subs}, @var{vals}, @var{sz}, @var{func}, @var{fillval}, @var{issparse}) ## @deftypefnx {Function File} {} accumarray (@var{subs}, @var{vals}, @dots{}) ## ## Create an array by accumulating the elements of a vector into the ## positions defined by their subscripts. The subscripts are defined by ## the rows of the matrix @var{subs} and the values by @var{vals}. Each ## row of @var{subs} corresponds to one of the values in @var{vals}. If ## @var{vals} is a scalar, it will be used for each of the row of ## @var{subs}. If @var{subs} is a cell array of vectors, all vectors ## must be of the same length, and the subscripts in the @var{k}th ## vector must correspond to the @var{k}th dimension of the result. ## ## The size of the matrix will be determined by the subscripts ## themselves. However, if @var{sz} is defined it determines the matrix ## size. The length of @var{sz} must correspond to the number of columns ## in @var{subs}. An exception is if @var{subs} has only one column, in ## which case @var{sz} may be the dimensions of a vector and the ## subscripts of @var{subs} are taken as the indices into it. ## ## The default action of @code{accumarray} is to sum the elements with ## the same subscripts. This behavior can be modified by defining the ## @var{func} function. This should be a function or function handle ## that accepts a column vector and returns a scalar. The result of the ## function should not depend on the order of the subscripts. ## ## The elements of the returned array that have no subscripts associated ## with them are set to zero. Defining @var{fillval} to some other value ## allows these values to be defined. This behavior changes, however, ## for certain values of @var{func}. If @var{func} is @code{min} ## (respectively, @code{max}) then the result will be filled with the ## minimum (respectively, maximum) integer if @var{vals} is of integral ## type, logical false (respectively, logical true) if @var{vals} is of ## logical type, zero if @var{fillval} is zero and all values are ## non-positive (respectively, non-negative), and NaN otherwise. ## ## By default @code{accumarray} returns a full matrix. If ## @var{issparse} is logically true, then a sparse matrix is returned ## instead. ## ## The following @code{accumarray} example constructs a frequency table ## that in the first column counts how many occurrences each number in ## the second column has, taken from the vector @var{x}. Note the usage ## of @code{unique} for assigning to all repeated elements of @var{x} ## the same index (@pxref{doc-unique}). ## ## @example ## @group ## @var{x} = [91, 92, 90, 92, 90, 89, 91, 89, 90, 100, 100, 100]; ## [@var{u}, ~, @var{j}] = unique (@var{x}); ## [accumarray(@var{j}', 1), @var{u}'] ## @result{} 2 89 ## 3 90 ## 2 91 ## 2 92 ## 3 100 ## @end group ## @end example ## ## Another example, where the result is a multi-dimensional 3-D array and ## the default value (zero) appears in the output: ## ## @example ## @group ## accumarray ([1, 1, 1; ## 2, 1, 2; ## 2, 3, 2; ## 2, 1, 2; ## 2, 3, 2], 101:105) ## @result{} ans(:,:,1) = [101, 0, 0; 0, 0, 0] ## @result{} ans(:,:,2) = [0, 0, 0; 206, 0, 208] ## @end group ## @end example ## ## The sparse option can be used as an alternative to the @code{sparse} ## constructor (@pxref{doc-sparse}). Thus ## ## @example ## sparse (@var{i}, @var{j}, @var{sv}) ## @end example ## ## @noindent ## can be written with @code{accumarray} as ## ## @example ## accumarray ([@var{i}, @var{j}], @var{sv}', [], [], 0, true) ## @end example ## ## @noindent ## For repeated indices, @code{sparse} adds the corresponding value. To ## take the minimum instead, use @code{min} as an accumulator function: ## ## @example ## accumarray ([@var{i}, @var{j}], @var{sv}', [], @@min, 0, true) ## @end example ## ## The complexity of accumarray in general for the non-sparse case is ## generally O(M+N), where N is the number of subscripts and M is the ## maximum subscript (linearized in multi-dimensional case). If ## @var{func} is one of @code{@@sum} (default), @code{@@max}, ## @code{@@min} or @code{@@(x) @{x@}}, an optimized code path is used. ## Note that for general reduction function the interpreter overhead can ## play a major part and it may be more efficient to do multiple ## accumarray calls and compute the results in a vectorized manner. ## ## @seealso{accumdim, unique, sparse} ## @end deftypefn function A = accumarray (subs, vals, sz = [], func = [], fillval = [], issparse = []) if (nargin < 2 || nargin > 6) print_usage (); endif lenvals = length (vals); if (iscell (subs)) subs = cellfun (@vec, subs, "uniformoutput", false); ndims = numel (subs); if (ndims == 1) subs = subs{1}; endif lensubs = cellfun (@length, subs); if (any (lensubs != lensubs(1)) || (lenvals > 1 && lenvals != lensubs(1))) error ("accumarray: dimension mismatch"); endif else ndims = columns (subs); if (lenvals > 1 && lenvals != rows (subs)) error ("accumarray: dimension mismatch") endif endif if (isempty (fillval)) fillval = 0; endif if (isempty (issparse)) issparse = false; endif if (issparse) ## Sparse case. Avoid linearizing the subscripts, because it could ## overflow. if (fillval != 0) error ("accumarray: FILLVAL must be zero in the sparse case"); endif ## Ensure subscripts are a two-column matrix. if (iscell (subs)) subs = [subs{:}]; endif ## Validate dimensions. if (ndims == 1) subs(:,2) = 1; elseif (ndims != 2) error ("accumarray: in the sparse case, needs 1 or 2 subscripts"); endif if (isnumeric (vals) || islogical (vals)) vals = double (vals); else error ("accumarray: in the sparse case, values must be numeric or logical"); endif if (! (isempty (func) || func == @sum)) ## Reduce values. This is not needed if we're about to sum them, ## because "sparse" can do that. ## Sort indices. [subs, idx] = sortrows (subs); n = rows (subs); ## Identify runs. jdx = find (any (diff (subs, 1, 1), 2)); jdx = [jdx; n]; vals = cellfun (func, mat2cell (vals(:)(idx), diff ([0; jdx]))); subs = subs(jdx, :); mode = "unique"; else mode = "sum"; endif ## Form the sparse matrix. if (isempty (sz)) A = sparse (subs(:,1), subs(:,2), vals, mode); elseif (length (sz) == 2) ## Row vector case if (sz(1) == 1) [i, j] = deal (subs(:,2), subs(:,1)); else [i, j] = deal (subs(:,1), subs(:,2)); endif A = sparse (i, j, vals, sz(1), sz(2), mode); else error ("accumarray: dimensions mismatch"); endif else ## Linearize subscripts. if (ndims > 1) if (isempty (sz)) if (iscell (subs)) sz = cellfun ("max", subs); else sz = max (subs, [], 1); endif elseif (ndims != length (sz)) error ("accumarray: dimensions mismatch"); endif ## Convert multidimensional subscripts. if (ismatrix (subs)) subs = num2cell (subs, 1); endif subs = sub2ind (sz, subs{:}); # creates index cache elseif (! isempty (sz) && length (sz) < 2) error ("accumarray: needs at least 2 dimensions"); elseif (! isindex (subs)) # creates index cache error ("accumarray: indices must be positive integers"); endif ## Some built-in reductions handled efficiently. if (isempty (func) || func == @sum) ## Fast summation. if (isempty (sz)) A = __accumarray_sum__ (subs, vals); else A = __accumarray_sum__ (subs, vals, prod (sz)); ## set proper shape. A = reshape (A, sz); endif ## we fill in nonzero fill value. if (fillval != 0) mask = true (size (A)); mask(subs) = false; A(mask) = fillval; endif elseif (func == @max) ## Fast maximization. if (isinteger (vals)) zero = intmin (class (vals)); elseif (islogical (vals)) zero = false; elseif (fillval == 0 && all (vals(:) >= 0)) ## This is a common case - fillval is zero, all numbers ## nonegative. zero = 0; else zero = NaN; # Neutral value. endif if (isempty (sz)) A = __accumarray_max__ (subs, vals, zero); else A = __accumarray_max__ (subs, vals, zero, prod (sz)); A = reshape (A, sz); endif if (fillval != zero && ! (isnan (fillval) || isnan (zero))) mask = true (size (A)); mask(subs) = false; A(mask) = fillval; endif elseif (func == @min) ## Fast minimization. if (isinteger (vals)) zero = intmax (class (vals)); elseif (islogical (vals)) zero = true; elseif (fillval == 0 && all (vals(:) <= 0)) ## This is a common case - fillval is zero, all numbers ## non-positive. zero = 0; else zero = NaN; # Neutral value. endif if (isempty (sz)) A = __accumarray_min__ (subs, vals, zero); else A = __accumarray_min__ (subs, vals, zero, prod (sz)); A = reshape (A, sz); endif if (fillval != zero && ! (isnan (fillval) || isnan (zero))) mask = true (size (A)); mask(subs) = false; A(mask) = fillval; endif else ## The general case. Reduce values. n = rows (subs); if (numel (vals) == 1) vals = vals(ones (1, n), 1); else vals = vals(:); endif ## Sort indices. [subs, idx] = sort (subs); ## Identify runs. jdx = find (subs(1:n-1) != subs(2:n)); jdx = [jdx; n]; vals = mat2cell (vals(idx), diff ([0; jdx])); ## Optimize the case when function is @(x) {x}, i.e. we just want ## to collect the values to cells. persistent simple_cell_str = func2str (@(x) {x}); if (! strcmp (func2str (func), simple_cell_str)) vals = cellfun (func, vals); endif subs = subs(jdx); if (isempty (sz)) sz = max (subs); if (length (sz) == 1) sz(2) = 1; endif endif ## Construct matrix of fillvals. if (iscell (vals)) A = cell (sz); elseif (fillval == 0) A = zeros (sz, class (vals)); else A = repmat (fillval, sz); endif ## Set the reduced values. A(subs) = vals; endif endif endfunction %!assert (accumarray ([1;2;4;2;4],101:105), [101;206;0;208]) %!assert (accumarray ([1,1,1;2,1,2;2,3,2;2,1,2;2,3,2],101:105), cat(3, [101,0,0;0,0,0],[0,0,0;206,0,208])) %!assert (accumarray ([1,1,1;2,1,2;2,3,2;2,1,2;2,3,2],101:105,[],@(x)sin(sum(x))), sin (cat (3, [101,0,0;0,0,0],[0,0,0;206,0,208]))) %!assert (accumarray ({[1 3 3 2 3 1 2 2 3 3 1 2],[3 4 2 1 4 3 4 2 2 4 3 4],[1 1 2 2 1 1 2 1 1 1 2 2]},101:112), cat (3, [0,0,207,0;0,108,0,0;0,109,0,317], [0,0,111,0;104,0,0,219;0,103,0,0])) %!assert (accumarray ([1,1;2,1;2,3;2,1;2,3],101:105,[2,4],@max,NaN), [101,NaN,NaN,NaN;104,NaN,105,NaN]) %!assert (accumarray ([1 1; 2 1; 2 3; 2 1; 2 3],101:105, [], @prod), [101, 0, 0; 10608, 0, 10815]) %!assert (accumarray ([1 1; 2 1; 2 3; 2 1; 2 3],101:105,[2 4],@prod,0,true), sparse ([1,2,2],[1,1,3],[101,10608,10815],2,4)) %!assert (accumarray ([1 1; 2 1; 2 3; 2 1; 2 3],1,[2,4]), [1,0,0,0;2,0,2,0]) %!assert (accumarray ([1 1; 2 1; 2 3; 2 1; 2 3],101:105,[2,4],@(x)length(x)>1), [false,false,false,false;true,false,true,false]) %!assert (accumarray ([1; 2], [3; 4], [2, 1], @min, [], 0), [3; 4]) %!assert (accumarray ([1; 2], [3; 4], [2, 1], @min, [], 1), sparse ([3; 4])) %!assert (accumarray ([1; 2], [3; 4], [1, 2], @min, [], 0), [3, 4]) %!assert (accumarray ([1; 2], [3; 4], [1, 2], @min, [], 1), sparse ([3, 4])) %!test %! A = accumarray ([1 1; 2 1; 2 3; 2 1; 2 3], 101:105, [2,4], @(x){x}); %! assert (A{2},[102;104]); %!test %! subs = ceil (rand (2000, 3)*10); %! vals = rand (2000, 1); %! assert (accumarray (subs, vals, [], @max), accumarray (subs, vals, [], @(x) max (x))); %!test %! subs = ceil (rand (2000, 1)*100); %! vals = rand (2000, 1); %! assert (accumarray (subs, vals, [100, 1], @min, NaN), accumarray (subs, vals, [100, 1], @(x) min (x), NaN)); %!test %! subs = ceil (rand (2000, 2)*30); %! subsc = num2cell (subs, 1); %! vals = rand (2000, 1); %! assert (accumarray (subsc, vals, [], [], 0, true), accumarray (subs, vals, [], [], 0, true)); %!test %! subs = ceil (rand (2000, 3)*10); %! subsc = num2cell (subs, 1); %! vals = rand (2000, 1); %! assert (accumarray (subsc, vals, [], @max), accumarray (subs, vals, [], @max)); %!error (accumarray (1:5)) %!error (accumarray ([1,2,3],1:2))