Mercurial > hg > octave-lyh
view scripts/optimization/fzero.m @ 14363:f3d52523cde1
Use Octave coding conventions in all m-file %!test blocks
* wavread.m, acosd.m, acot.m, acotd.m, acoth.m, acsc.m, acscd.m, acsch.m,
asec.m, asecd.m, asech.m, asind.m, atand.m, cosd.m, cot.m, cotd.m, coth.m,
csc.m, cscd.m, csch.m, sec.m, secd.m, sech.m, sind.m, tand.m, accumarray.m,
accumdim.m, bitcmp.m, bitget.m, bitset.m, blkdiag.m, cart2pol.m, cart2sph.m,
celldisp.m, chop.m, circshift.m, colon.m, common_size.m, cplxpair.m,
cumtrapz.m, curl.m, dblquad.m, deal.m, divergence.m, flipdim.m, fliplr.m,
flipud.m, genvarname.m, gradient.m, idivide.m, int2str.m, interp1.m,
interp1q.m, interp2.m, interp3.m, interpft.m, interpn.m, isa.m, isdir.m,
isequal.m, isequalwithequalnans.m, issquare.m, logspace.m, nargchk.m,
narginchk.m, nargoutchk.m, nextpow2.m, nthargout.m, num2str.m, pol2cart.m,
polyarea.m, postpad.m, prepad.m, profile.m, profshow.m, quadgk.m, quadv.m,
randi.m, rat.m, repmat.m, rot90.m, rotdim.m, shift.m, shiftdim.m, sph2cart.m,
structfun.m, trapz.m, triplequad.m, convhull.m, dsearch.m, dsearchn.m,
griddata3.m, griddatan.m, rectint.m, tsearchn.m, __makeinfo__.m, doc.m,
get_first_help_sentence.m, help.m, type.m, unimplemented.m, which.m, imread.m,
imwrite.m, dlmwrite.m, fileread.m, is_valid_file_id.m, strread.m, textread.m,
textscan.m, commutation_matrix.m, cond.m, condest.m, cross.m,
duplication_matrix.m, expm.m, housh.m, isdefinite.m, ishermitian.m,
issymmetric.m, logm.m, normest.m, null.m, onenormest.m, orth.m, planerot.m,
qzhess.m, rank.m, rref.m, trace.m, vech.m, ans.m, bincoeff.m, bug_report.m,
bzip2.m, comma.m, compare_versions.m, computer.m, edit.m, fileparts.m,
fullfile.m, getfield.m, gzip.m, info.m, inputname.m, isappdata.m, isdeployed.m,
ismac.m, ispc.m, isunix.m, list_primes.m, ls.m, mexext.m, namelengthmax.m,
news.m, orderfields.m, paren.m, recycle.m, rmappdata.m, semicolon.m,
setappdata.m, setfield.m, substruct.m, symvar.m, ver.m, version.m,
warning_ids.m, xor.m, fminbnd.m, fsolve.m, fzero.m, lsqnonneg.m, optimset.m,
pqpnonneg.m, sqp.m, matlabroot.m, __gnuplot_drawnow__.m,
__plt_get_axis_arg__.m, ancestor.m, cla.m, clf.m, close.m, colorbar.m,
colstyle.m, comet3.m, contourc.m, figure.m, gca.m, gcbf.m, gcbo.m, gcf.m,
ginput.m, graphics_toolkit.m, gtext.m, hggroup.m, hist.m, hold.m, isfigure.m,
ishghandle.m, ishold.m, isocolors.m, isonormals.m, isosurface.m, isprop.m,
legend.m, line.m, loglog.m, loglogerr.m, meshgrid.m, ndgrid.m, newplot.m,
orient.m, patch.m, plot3.m, plotyy.m, __print_parse_opts__.m, quiver3.m,
refreshdata.m, ribbon.m, semilogx.m, semilogxerr.m, semilogy.m, stem.m,
stem3.m, subplot.m, title.m, uigetfile.m, view.m, whitebg.m, compan.m, conv.m,
deconv.m, mkpp.m, mpoles.m, pchip.m, poly.m, polyaffine.m, polyder.m,
polyfit.m, polygcd.m, polyint.m, polyout.m, polyval.m, polyvalm.m, ppder.m,
ppint.m, ppjumps.m, ppval.m, residue.m, roots.m, spline.m, intersect.m,
ismember.m, powerset.m, setdiff.m, setxor.m, union.m, unique.m,
autoreg_matrix.m, bartlett.m, blackman.m, detrend.m, fftconv.m, fftfilt.m,
fftshift.m, freqz.m, hamming.m, hanning.m, ifftshift.m, sinc.m, sinetone.m,
sinewave.m, unwrap.m, bicg.m, bicgstab.m, gmres.m, gplot.m, nonzeros.m, pcg.m,
pcr.m, spaugment.m, spconvert.m, spdiags.m, speye.m, spfun.m, spones.m,
sprand.m, sprandsym.m, spstats.m, spy.m, svds.m, treelayout.m, bessel.m,
beta.m, betaln.m, factor.m, factorial.m, isprime.m, lcm.m, legendre.m,
nchoosek.m, nthroot.m, perms.m, pow2.m, primes.m, reallog.m, realpow.m,
realsqrt.m, hadamard.m, hankel.m, hilb.m, invhilb.m, magic.m, rosser.m,
vander.m, __finish__.m, center.m, cloglog.m, corr.m, cov.m, gls.m, histc.m,
iqr.m, kendall.m, kurtosis.m, logit.m, mahalanobis.m, mean.m, meansq.m,
median.m, mode.m, moment.m, ols.m, ppplot.m, prctile.m, probit.m, quantile.m,
range.m, ranks.m, run_count.m, runlength.m, skewness.m, spearman.m,
statistics.m, std.m, table.m, var.m, zscore.m, betacdf.m, betainv.m, betapdf.m,
betarnd.m, binocdf.m, binoinv.m, binopdf.m, binornd.m, cauchy_cdf.m,
cauchy_inv.m, cauchy_pdf.m, cauchy_rnd.m, chi2cdf.m, chi2inv.m, chi2pdf.m,
chi2rnd.m, discrete_cdf.m, discrete_inv.m, discrete_pdf.m, discrete_rnd.m,
empirical_cdf.m, empirical_inv.m, empirical_pdf.m, empirical_rnd.m, expcdf.m,
expinv.m, exppdf.m, exprnd.m, fcdf.m, finv.m, fpdf.m, frnd.m, gamcdf.m,
gaminv.m, gampdf.m, gamrnd.m, geocdf.m, geoinv.m, geopdf.m, geornd.m,
hygecdf.m, hygeinv.m, hygepdf.m, hygernd.m, kolmogorov_smirnov_cdf.m,
laplace_cdf.m, laplace_inv.m, laplace_pdf.m, laplace_rnd.m, logistic_cdf.m,
logistic_inv.m, logistic_pdf.m, logistic_rnd.m, logncdf.m, logninv.m,
lognpdf.m, lognrnd.m, nbincdf.m, nbininv.m, nbinpdf.m, nbinrnd.m, normcdf.m,
norminv.m, normpdf.m, normrnd.m, poisscdf.m, poissinv.m, poisspdf.m,
poissrnd.m, stdnormal_cdf.m, stdnormal_inv.m, stdnormal_pdf.m, stdnormal_rnd.m,
tcdf.m, tinv.m, tpdf.m, trnd.m, unidcdf.m, unidinv.m, unidpdf.m, unidrnd.m,
unifcdf.m, unifinv.m, unifpdf.m, unifrnd.m, wblcdf.m, wblinv.m, wblpdf.m,
wblrnd.m, kolmogorov_smirnov_test.m, kruskal_wallis_test.m, base2dec.m,
bin2dec.m, blanks.m, cstrcat.m, deblank.m, dec2base.m, dec2bin.m, dec2hex.m,
findstr.m, hex2dec.m, index.m, isletter.m, mat2str.m, rindex.m, str2num.m,
strcat.m, strjust.m, strmatch.m, strsplit.m, strtok.m, strtrim.m, strtrunc.m,
substr.m, validatestring.m, demo.m, example.m, fail.m, speed.m, addtodate.m,
asctime.m, clock.m, ctime.m, date.m, datenum.m, datetick.m, datevec.m,
eomday.m, etime.m, is_leap_year.m, now.m:
Use Octave coding conventions in all m-file %!test blocks
author | Rik <octave@nomad.inbox5.com> |
---|---|
date | Mon, 13 Feb 2012 07:29:44 -0800 |
parents | 72c96de7a403 |
children | 86854d032a37 |
line wrap: on
line source
## Copyright (C) 2008-2012 VZLU Prague, a.s. ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## ## Author: Jaroslav Hajek <highegg@gmail.com> ## -*- texinfo -*- ## @deftypefn {Function File} {} fzero (@var{fun}, @var{x0}) ## @deftypefnx {Function File} {} fzero (@var{fun}, @var{x0}, @var{options}) ## @deftypefnx {Function File} {[@var{x}, @var{fval}, @var{info}, @var{output}] =} fzero (@dots{}) ## Find a zero of a univariate function. ## ## @var{fun} is a function handle, inline function, or string ## containing the name of the function to evaluate. ## @var{x0} should be a two-element vector specifying two points which ## bracket a zero. In other words, there must be a change in sign of the ## function between @var{x0}(1) and @var{x0}(2). More mathematically, the ## following must hold ## ## @example ## sign (@var{fun}(@var{x0}(1))) * sign (@var{fun}(@var{x0}(2))) <= 0 ## @end example ## ## If @var{x0} is a single scalar then several nearby and distant ## values are probed in an attempt to obtain a valid bracketing. If this ## is not successful, the function fails. ## @var{options} is a structure specifying additional options. ## Currently, @code{fzero} ## recognizes these options: @code{"FunValCheck"}, @code{"OutputFcn"}, ## @code{"TolX"}, @code{"MaxIter"}, @code{"MaxFunEvals"}. ## For a description of these options, see @ref{doc-optimset,,optimset}. ## ## On exit, the function returns @var{x}, the approximate zero point ## and @var{fval}, the function value thereof. ## @var{info} is an exit flag that can have these values: ## ## @itemize ## @item 1 ## The algorithm converged to a solution. ## ## @item 0 ## Maximum number of iterations or function evaluations has been reached. ## ## @item -1 ## The algorithm has been terminated from user output function. ## ## @item -5 ## The algorithm may have converged to a singular point. ## @end itemize ## ## @var{output} is a structure containing runtime information about the ## @code{fzero} algorithm. Fields in the structure are: ## ## @itemize ## @item iterations ## Number of iterations through loop. ## ## @item nfev ## Number of function evaluations. ## ## @item bracketx ## A two-element vector with the final bracketing of the zero along the x-axis. ## ## @item brackety ## A two-element vector with the final bracketing of the zero along the y-axis. ## @end itemize ## @seealso{optimset, fsolve} ## @end deftypefn ## This is essentially the ACM algorithm 748: Enclosing Zeros of ## Continuous Functions due to Alefeld, Potra and Shi, ACM Transactions ## on Mathematical Software, Vol. 21, No. 3, September 1995. Although ## the workflow should be the same, the structure of the algorithm has ## been transformed non-trivially; instead of the authors' approach of ## sequentially calling building blocks subprograms we implement here a ## FSM version using one interior point determination and one bracketing ## per iteration, thus reducing the number of temporary variables and ## simplifying the algorithm structure. Further, this approach reduces ## the need for external functions and error handling. The algorithm has ## also been slightly modified. ## PKG_ADD: ## Discard result to avoid polluting workspace with ans at startup. ## PKG_ADD: [~] = __all_opts__ ("fzero"); function [x, fval, info, output] = fzero (fun, x0, options = struct ()) ## Get default options if requested. if (nargin == 1 && ischar (fun) && strcmp (fun, 'defaults')) x = optimset ("MaxIter", Inf, "MaxFunEvals", Inf, "TolX", 1e-8, \ "OutputFcn", [], "FunValCheck", "off"); return; endif if (nargin < 2 || nargin > 3) print_usage (); endif if (ischar (fun)) fun = str2func (fun, "global"); endif ## TODO ## displev = optimget (options, "Display", "notify"); funvalchk = strcmpi (optimget (options, "FunValCheck", "off"), "on"); outfcn = optimget (options, "OutputFcn"); tolx = optimget (options, "TolX", 1e-8); maxiter = optimget (options, "MaxIter", Inf); maxfev = optimget (options, "MaxFunEvals", Inf); persistent mu = 0.5; if (funvalchk) ## Replace fun with a guarded version. fun = @(x) guarded_eval (fun, x); endif ## The default exit flag if exceeded number of iterations. info = 0; niter = 0; nfev = 0; x = fval = a = fa = b = fb = NaN; eps = eps (class (x0)); ## Prepare... a = x0(1); fa = fun (a); nfev = 1; if (length (x0) > 1) b = x0(2); fb = fun (b); nfev += 1; else ## Try to get b. if (a == 0) aa = 1; else aa = a; endif for b = [0.9*aa, 1.1*aa, aa-1, aa+1, 0.5*aa 1.5*aa, -aa, 2*aa, -10*aa, 10*aa] fb = fun (b); nfev += 1; if (sign (fa) * sign (fb) <= 0) break; endif endfor endif if (b < a) u = a; a = b; b = u; fu = fa; fa = fb; fb = fu; endif if (! (sign (fa) * sign (fb) <= 0)) error ("fzero:bracket", "fzero: not a valid initial bracketing"); endif slope0 = (fb - fa) / (b - a); if (fa == 0) b = a; fb = fa; elseif (fb == 0) a = b; fa = fb; endif itype = 1; if (abs (fa) < abs (fb)) u = a; fu = fa; else u = b; fu = fb; endif d = e = u; fd = fe = fu; mba = mu*(b - a); while (niter < maxiter && nfev < maxfev) switch (itype) case 1 ## The initial test. if (b - a <= 2*(2 * abs (u) * eps + tolx)) x = u; fval = fu; info = 1; break; endif if (abs (fa) <= 1e3*abs (fb) && abs (fb) <= 1e3*abs (fa)) ## Secant step. c = u - (a - b) / (fa - fb) * fu; else ## Bisection step. c = 0.5*(a + b); endif d = u; fd = fu; itype = 5; case {2, 3} l = length (unique ([fa, fb, fd, fe])); if (l == 4) ## Inverse cubic interpolation. q11 = (d - e) * fd / (fe - fd); q21 = (b - d) * fb / (fd - fb); q31 = (a - b) * fa / (fb - fa); d21 = (b - d) * fd / (fd - fb); d31 = (a - b) * fb / (fb - fa); q22 = (d21 - q11) * fb / (fe - fb); q32 = (d31 - q21) * fa / (fd - fa); d32 = (d31 - q21) * fd / (fd - fa); q33 = (d32 - q22) * fa / (fe - fa); c = a + q31 + q32 + q33; endif if (l < 4 || sign (c - a) * sign (c - b) > 0) ## Quadratic interpolation + newton. a0 = fa; a1 = (fb - fa)/(b - a); a2 = ((fd - fb)/(d - b) - a1) / (d - a); ## Modification 1: this is simpler and does not seem to be worse. c = a - a0/a1; if (a2 != 0) c = a - a0/a1; for i = 1:itype pc = a0 + (a1 + a2*(c - b))*(c - a); pdc = a1 + a2*(2*c - a - b); if (pdc == 0) c = a - a0/a1; break; endif c -= pc/pdc; endfor endif endif itype += 1; case 4 ## Double secant step. c = u - 2*(b - a)/(fb - fa)*fu; ## Bisect if too far. if (abs (c - u) > 0.5*(b - a)) c = 0.5 * (b + a); endif itype = 5; case 5 ## Bisection step. c = 0.5 * (b + a); itype = 2; endswitch ## Don't let c come too close to a or b. delta = 2*0.7*(2 * abs (u) * eps + tolx); if ((b - a) <= 2*delta) c = (a + b)/2; else c = max (a + delta, min (b - delta, c)); endif ## Calculate new point. x = c; fval = fc = fun (c); niter ++; nfev ++; ## Modification 2: skip inverse cubic interpolation if ## nonmonotonicity is detected. if (sign (fc - fa) * sign (fc - fb) >= 0) ## The new point broke monotonicity. ## Disable inverse cubic. fe = fc; else e = d; fe = fd; endif ## Bracketing. if (sign (fa) * sign (fc) < 0) d = b; fd = fb; b = c; fb = fc; elseif (sign (fb) * sign (fc) < 0) d = a; fd = fa; a = c; fa = fc; elseif (fc == 0) a = b = c; fa = fb = fc; info = 1; break; else ## This should never happen. error ("fzero:bracket", "fzero: zero point is not bracketed"); endif ## If there's an output function, use it now. if (outfcn) optv.funccount = nfev; optv.fval = fval; optv.iteration = niter; if (outfcn (x, optv, "iter")) info = -1; break; endif endif if (abs (fa) < abs (fb)) u = a; fu = fa; else u = b; fu = fb; endif if (b - a <= 2*(2 * abs (u) * eps + tolx)) info = 1; break; endif ## Skip bisection step if successful reduction. if (itype == 5 && (b - a) <= mba) itype = 2; endif if (itype == 2) mba = mu * (b - a); endif endwhile ## Check solution for a singularity by examining slope if (info == 1) if ((b - a) != 0 && abs ((fb - fa)/(b - a) / slope0) > max (1e6, 0.5/(eps+tolx))) info = -5; endif endif output.iterations = niter; output.funcCount = nfev; output.bracketx = [a, b]; output.brackety = [fa, fb]; endfunction ## An assistant function that evaluates a function handle and checks for ## bad results. function fx = guarded_eval (fun, x) fx = fun (x); fx = fx(1); if (! isreal (fx)) error ("fzero:notreal", "fzero: non-real value encountered"); elseif (isnan (fx)) error ("fzero:isnan", "fzero: NaN value encountered"); endif endfunction %!shared opt0 %! opt0 = optimset ("tolx", 0); %!assert (fzero (@cos, [0, 3], opt0), pi/2, 10*eps) %!assert (fzero (@(x) x^(1/3) - 1e-8, [0,1], opt0), 1e-24, 1e-22*eps)