Mercurial > hg > octave-lyh
view scripts/optimization/sqp.m @ 14363:f3d52523cde1
Use Octave coding conventions in all m-file %!test blocks
* wavread.m, acosd.m, acot.m, acotd.m, acoth.m, acsc.m, acscd.m, acsch.m,
asec.m, asecd.m, asech.m, asind.m, atand.m, cosd.m, cot.m, cotd.m, coth.m,
csc.m, cscd.m, csch.m, sec.m, secd.m, sech.m, sind.m, tand.m, accumarray.m,
accumdim.m, bitcmp.m, bitget.m, bitset.m, blkdiag.m, cart2pol.m, cart2sph.m,
celldisp.m, chop.m, circshift.m, colon.m, common_size.m, cplxpair.m,
cumtrapz.m, curl.m, dblquad.m, deal.m, divergence.m, flipdim.m, fliplr.m,
flipud.m, genvarname.m, gradient.m, idivide.m, int2str.m, interp1.m,
interp1q.m, interp2.m, interp3.m, interpft.m, interpn.m, isa.m, isdir.m,
isequal.m, isequalwithequalnans.m, issquare.m, logspace.m, nargchk.m,
narginchk.m, nargoutchk.m, nextpow2.m, nthargout.m, num2str.m, pol2cart.m,
polyarea.m, postpad.m, prepad.m, profile.m, profshow.m, quadgk.m, quadv.m,
randi.m, rat.m, repmat.m, rot90.m, rotdim.m, shift.m, shiftdim.m, sph2cart.m,
structfun.m, trapz.m, triplequad.m, convhull.m, dsearch.m, dsearchn.m,
griddata3.m, griddatan.m, rectint.m, tsearchn.m, __makeinfo__.m, doc.m,
get_first_help_sentence.m, help.m, type.m, unimplemented.m, which.m, imread.m,
imwrite.m, dlmwrite.m, fileread.m, is_valid_file_id.m, strread.m, textread.m,
textscan.m, commutation_matrix.m, cond.m, condest.m, cross.m,
duplication_matrix.m, expm.m, housh.m, isdefinite.m, ishermitian.m,
issymmetric.m, logm.m, normest.m, null.m, onenormest.m, orth.m, planerot.m,
qzhess.m, rank.m, rref.m, trace.m, vech.m, ans.m, bincoeff.m, bug_report.m,
bzip2.m, comma.m, compare_versions.m, computer.m, edit.m, fileparts.m,
fullfile.m, getfield.m, gzip.m, info.m, inputname.m, isappdata.m, isdeployed.m,
ismac.m, ispc.m, isunix.m, list_primes.m, ls.m, mexext.m, namelengthmax.m,
news.m, orderfields.m, paren.m, recycle.m, rmappdata.m, semicolon.m,
setappdata.m, setfield.m, substruct.m, symvar.m, ver.m, version.m,
warning_ids.m, xor.m, fminbnd.m, fsolve.m, fzero.m, lsqnonneg.m, optimset.m,
pqpnonneg.m, sqp.m, matlabroot.m, __gnuplot_drawnow__.m,
__plt_get_axis_arg__.m, ancestor.m, cla.m, clf.m, close.m, colorbar.m,
colstyle.m, comet3.m, contourc.m, figure.m, gca.m, gcbf.m, gcbo.m, gcf.m,
ginput.m, graphics_toolkit.m, gtext.m, hggroup.m, hist.m, hold.m, isfigure.m,
ishghandle.m, ishold.m, isocolors.m, isonormals.m, isosurface.m, isprop.m,
legend.m, line.m, loglog.m, loglogerr.m, meshgrid.m, ndgrid.m, newplot.m,
orient.m, patch.m, plot3.m, plotyy.m, __print_parse_opts__.m, quiver3.m,
refreshdata.m, ribbon.m, semilogx.m, semilogxerr.m, semilogy.m, stem.m,
stem3.m, subplot.m, title.m, uigetfile.m, view.m, whitebg.m, compan.m, conv.m,
deconv.m, mkpp.m, mpoles.m, pchip.m, poly.m, polyaffine.m, polyder.m,
polyfit.m, polygcd.m, polyint.m, polyout.m, polyval.m, polyvalm.m, ppder.m,
ppint.m, ppjumps.m, ppval.m, residue.m, roots.m, spline.m, intersect.m,
ismember.m, powerset.m, setdiff.m, setxor.m, union.m, unique.m,
autoreg_matrix.m, bartlett.m, blackman.m, detrend.m, fftconv.m, fftfilt.m,
fftshift.m, freqz.m, hamming.m, hanning.m, ifftshift.m, sinc.m, sinetone.m,
sinewave.m, unwrap.m, bicg.m, bicgstab.m, gmres.m, gplot.m, nonzeros.m, pcg.m,
pcr.m, spaugment.m, spconvert.m, spdiags.m, speye.m, spfun.m, spones.m,
sprand.m, sprandsym.m, spstats.m, spy.m, svds.m, treelayout.m, bessel.m,
beta.m, betaln.m, factor.m, factorial.m, isprime.m, lcm.m, legendre.m,
nchoosek.m, nthroot.m, perms.m, pow2.m, primes.m, reallog.m, realpow.m,
realsqrt.m, hadamard.m, hankel.m, hilb.m, invhilb.m, magic.m, rosser.m,
vander.m, __finish__.m, center.m, cloglog.m, corr.m, cov.m, gls.m, histc.m,
iqr.m, kendall.m, kurtosis.m, logit.m, mahalanobis.m, mean.m, meansq.m,
median.m, mode.m, moment.m, ols.m, ppplot.m, prctile.m, probit.m, quantile.m,
range.m, ranks.m, run_count.m, runlength.m, skewness.m, spearman.m,
statistics.m, std.m, table.m, var.m, zscore.m, betacdf.m, betainv.m, betapdf.m,
betarnd.m, binocdf.m, binoinv.m, binopdf.m, binornd.m, cauchy_cdf.m,
cauchy_inv.m, cauchy_pdf.m, cauchy_rnd.m, chi2cdf.m, chi2inv.m, chi2pdf.m,
chi2rnd.m, discrete_cdf.m, discrete_inv.m, discrete_pdf.m, discrete_rnd.m,
empirical_cdf.m, empirical_inv.m, empirical_pdf.m, empirical_rnd.m, expcdf.m,
expinv.m, exppdf.m, exprnd.m, fcdf.m, finv.m, fpdf.m, frnd.m, gamcdf.m,
gaminv.m, gampdf.m, gamrnd.m, geocdf.m, geoinv.m, geopdf.m, geornd.m,
hygecdf.m, hygeinv.m, hygepdf.m, hygernd.m, kolmogorov_smirnov_cdf.m,
laplace_cdf.m, laplace_inv.m, laplace_pdf.m, laplace_rnd.m, logistic_cdf.m,
logistic_inv.m, logistic_pdf.m, logistic_rnd.m, logncdf.m, logninv.m,
lognpdf.m, lognrnd.m, nbincdf.m, nbininv.m, nbinpdf.m, nbinrnd.m, normcdf.m,
norminv.m, normpdf.m, normrnd.m, poisscdf.m, poissinv.m, poisspdf.m,
poissrnd.m, stdnormal_cdf.m, stdnormal_inv.m, stdnormal_pdf.m, stdnormal_rnd.m,
tcdf.m, tinv.m, tpdf.m, trnd.m, unidcdf.m, unidinv.m, unidpdf.m, unidrnd.m,
unifcdf.m, unifinv.m, unifpdf.m, unifrnd.m, wblcdf.m, wblinv.m, wblpdf.m,
wblrnd.m, kolmogorov_smirnov_test.m, kruskal_wallis_test.m, base2dec.m,
bin2dec.m, blanks.m, cstrcat.m, deblank.m, dec2base.m, dec2bin.m, dec2hex.m,
findstr.m, hex2dec.m, index.m, isletter.m, mat2str.m, rindex.m, str2num.m,
strcat.m, strjust.m, strmatch.m, strsplit.m, strtok.m, strtrim.m, strtrunc.m,
substr.m, validatestring.m, demo.m, example.m, fail.m, speed.m, addtodate.m,
asctime.m, clock.m, ctime.m, date.m, datenum.m, datetick.m, datevec.m,
eomday.m, etime.m, is_leap_year.m, now.m:
Use Octave coding conventions in all m-file %!test blocks
author | Rik <octave@nomad.inbox5.com> |
---|---|
date | Mon, 13 Feb 2012 07:29:44 -0800 |
parents | 4d917a6a858b |
children | 86854d032a37 |
line wrap: on
line source
## Copyright (C) 2005-2012 John W. Eaton ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {[@var{x}, @var{obj}, @var{info}, @var{iter}, @var{nf}, @var{lambda}] =} sqp (@var{x0}, @var{phi}) ## @deftypefnx {Function File} {[@dots{}] =} sqp (@var{x0}, @var{phi}, @var{g}) ## @deftypefnx {Function File} {[@dots{}] =} sqp (@var{x0}, @var{phi}, @var{g}, @var{h}) ## @deftypefnx {Function File} {[@dots{}] =} sqp (@var{x0}, @var{phi}, @var{g}, @var{h}, @var{lb}, @var{ub}) ## @deftypefnx {Function File} {[@dots{}] =} sqp (@var{x0}, @var{phi}, @var{g}, @var{h}, @var{lb}, @var{ub}, @var{maxiter}) ## @deftypefnx {Function File} {[@dots{}] =} sqp (@var{x0}, @var{phi}, @var{g}, @var{h}, @var{lb}, @var{ub}, @var{maxiter}, @var{tol}) ## Solve the nonlinear program ## @tex ## $$ ## \min_x \phi (x) ## $$ ## @end tex ## @ifnottex ## ## @example ## @group ## min phi (x) ## x ## @end group ## @end example ## ## @end ifnottex ## subject to ## @tex ## $$ ## g(x) = 0 \qquad h(x) \geq 0 \qquad lb \leq x \leq ub ## $$ ## @end tex ## @ifnottex ## ## @example ## @group ## g(x) = 0 ## h(x) >= 0 ## lb <= x <= ub ## @end group ## @end example ## ## @end ifnottex ## @noindent ## using a sequential quadratic programming method. ## ## The first argument is the initial guess for the vector @var{x0}. ## ## The second argument is a function handle pointing to the objective ## function @var{phi}. The objective function must accept one vector ## argument and return a scalar. ## ## The second argument may also be a 2- or 3-element cell array of ## function handles. The first element should point to the objective ## function, the second should point to a function that computes the ## gradient of the objective function, and the third should point to a ## function that computes the Hessian of the objective function. If the ## gradient function is not supplied, the gradient is computed by finite ## differences. If the Hessian function is not supplied, a BFGS update ## formula is used to approximate the Hessian. ## ## When supplied, the gradient function @code{@var{phi}@{2@}} must accept ## one vector argument and return a vector. When supplied, the Hessian ## function @code{@var{phi}@{3@}} must accept one vector argument and ## return a matrix. ## ## The third and fourth arguments @var{g} and @var{h} are function ## handles pointing to functions that compute the equality constraints ## and the inequality constraints, respectively. If the problem does ## not have equality (or inequality) constraints, then use an empty ## matrix ([]) for @var{g} (or @var{h}). When supplied, these equality ## and inequality constraint functions must accept one vector argument ## and return a vector. ## ## The third and fourth arguments may also be 2-element cell arrays of ## function handles. The first element should point to the constraint ## function and the second should point to a function that computes the ## gradient of the constraint function: ## @tex ## $$ ## \Bigg( {\partial f(x) \over \partial x_1}, ## {\partial f(x) \over \partial x_2}, \ldots, ## {\partial f(x) \over \partial x_N} \Bigg)^T ## $$ ## @end tex ## @ifnottex ## ## @example ## @group ## [ d f(x) d f(x) d f(x) ] ## transpose ( [ ------ ----- ... ------ ] ) ## [ dx_1 dx_2 dx_N ] ## @end group ## @end example ## ## @end ifnottex ## The fifth and sixth arguments, @var{lb} and @var{ub}, contain lower ## and upper bounds on @var{x}. These must be consistent with the ## equality and inequality constraints @var{g} and @var{h}. If the ## arguments are vectors then @var{x}(i) is bound by @var{lb}(i) and ## @var{ub}(i). A bound can also be a scalar in which case all elements ## of @var{x} will share the same bound. If only one bound (lb, ub) is ## specified then the other will default to (-@var{realmax}, ## +@var{realmax}). ## ## The seventh argument @var{maxiter} specifies the maximum number of ## iterations. The default value is 100. ## ## The eighth argument @var{tol} specifies the tolerance for the ## stopping criteria. The default value is @code{sqrt(eps)}. ## ## The value returned in @var{info} may be one of the following: ## ## @table @asis ## @item 101 ## The algorithm terminated normally. ## Either all constraints meet the requested tolerance, or the stepsize, ## @tex ## $\Delta x,$ ## @end tex ## @ifnottex ## delta @var{x}, ## @end ifnottex ## is less than @code{@var{tol} * norm (x)}. ## ## @item 102 ## The BFGS update failed. ## ## @item 103 ## The maximum number of iterations was reached. ## @end table ## ## An example of calling @code{sqp}: ## ## @example ## function r = g (x) ## r = [ sumsq(x)-10; ## x(2)*x(3)-5*x(4)*x(5); ## x(1)^3+x(2)^3+1 ]; ## endfunction ## ## function obj = phi (x) ## obj = exp (prod (x)) - 0.5*(x(1)^3+x(2)^3+1)^2; ## endfunction ## ## x0 = [-1.8; 1.7; 1.9; -0.8; -0.8]; ## ## [x, obj, info, iter, nf, lambda] = sqp (x0, @@phi, @@g, []) ## ## x = ## ## -1.71714 ## 1.59571 ## 1.82725 ## -0.76364 ## -0.76364 ## ## obj = 0.053950 ## info = 101 ## iter = 8 ## nf = 10 ## lambda = ## ## -0.0401627 ## 0.0379578 ## -0.0052227 ## @end example ## ## @seealso{qp} ## @end deftypefn function [x, obj, info, iter, nf, lambda] = sqp (x0, objf, cef, cif, lb, ub, maxiter, tolerance) global __sqp_nfun__; global __sqp_obj_fun__; global __sqp_ce_fun__; global __sqp_ci_fun__; global __sqp_cif__; global __sqp_cifcn__; if (nargin < 2 || nargin > 8 || nargin == 5) print_usage (); endif if (!isvector (x0)) error ("sqp: X0 must be a vector"); endif if (rows (x0) == 1) x0 = x0'; endif obj_grd = @fd_obj_grd; have_hess = 0; if (iscell (objf)) switch (numel (objf)) case 1 obj_fun = objf{1}; case 2 obj_fun = objf{1}; obj_grd = objf{2}; case 3 obj_fun = objf{1}; obj_grd = objf{2}; obj_hess = objf{3}; have_hess = 1; otherwise error ("sqp: invalid objective function specification"); endswitch else obj_fun = objf; # No cell array, only obj_fun set endif __sqp_obj_fun__ = obj_fun; ce_fun = @empty_cf; ce_grd = @empty_jac; if (nargin > 2) ce_grd = @fd_ce_jac; if (iscell (cef)) switch (numel (cef)) case 1 ce_fun = cef{1}; case 2 ce_fun = cef{1}; ce_grd = cef{2}; otherwise error ("sqp: invalid equality constraint function specification"); endswitch elseif (! isempty (cef)) ce_fun = cef; # No cell array, only constraint equality function set endif endif __sqp_ce_fun__ = ce_fun; ci_fun = @empty_cf; ci_grd = @empty_jac; if (nargin > 3) ## constraint function given by user with possible gradient __sqp_cif__ = cif; ## constraint function given by user without gradient __sqp_cifcn__ = @empty_cf; if (iscell (cif)) if (length (cif) > 0) __sqp_cifcn__ = cif{1}; endif elseif (! isempty (cif)) __sqp_cifcn__ = cif; endif if (nargin < 5 || (nargin > 5 && isempty (lb) && isempty (ub))) ## constraint inequality function only without any bounds ci_grd = @fd_ci_jac; if (iscell (cif)) switch length (cif) case {1} ci_fun = cif{1}; case {2} ci_fun = cif{1}; ci_grd = cif{2}; otherwise error ("sqp: invalid inequality constraint function specification"); endswitch elseif (! isempty (cif)) ci_fun = cif; # No cell array, only constraint inequality function set endif else ## constraint inequality function with bounds present global __sqp_lb__; lb_idx = ub_idx = true (size (x0)); ub_grad = - (lb_grad = eye (rows (x0))); if (isvector (lb)) __sqp_lb__ = tmp_lb = lb(:); lb_idx(:) = tmp_idx = (lb != -Inf); __sqp_lb__ = __sqp_lb__(tmp_idx, 1); lb_grad = lb_grad(lb_idx, :); elseif (isempty (lb)) if (isa (x0, "single")) __sqp_lb__ = tmp_lb = -realmax ("single"); else __sqp_lb__ = tmp_lb = -realmax; endif else error ("sqp: invalid lower bound"); endif global __sqp_ub__; if (isvector (ub)) __sqp_ub__ = tmp_ub = ub(:); ub_idx(:) = tmp_idx = (ub != Inf); __sqp_ub__ = __sqp_ub__(tmp_idx, 1); ub_grad = ub_grad(ub_idx, :); elseif (isempty (ub)) if (isa (x0, "single")) __sqp_ub__ = tmp_ub = realmax ("single"); else __sqp_ub__ = tmp_ub = realmax; endif else error ("sqp: invalid upper bound"); endif if (any (tmp_lb > tmp_ub)) error ("sqp: upper bound smaller than lower bound"); endif bounds_grad = [lb_grad; ub_grad]; ci_fun = @ (x) cf_ub_lb (x, lb_idx, ub_idx); ci_grd = @ (x) cigrad_ub_lb (x, bounds_grad); endif __sqp_ci_fun__ = ci_fun; endif # if (nargin > 3) iter_max = 100; if (nargin > 6 && ! isempty (maxiter)) if (isscalar (maxiter) && maxiter > 0 && fix (maxiter) == maxiter) iter_max = maxiter; else error ("sqp: invalid number of maximum iterations"); endif endif tol = sqrt (eps); if (nargin > 7 && ! isempty (tolerance)) if (isscalar (tolerance) && tolerance > 0) tol = tolerance; else error ("sqp: invalid value for TOLERANCE"); endif endif ## Initialize variables for search loop ## Seed x with initial guess and evaluate objective function, constraints, ## and gradients at initial value x0. ## ## obj_fun -- objective function ## obj_grad -- objective gradient ## ce_fun -- equality constraint functions ## ci_fun -- inequality constraint functions ## A == [grad_{x_1} cx_fun, grad_{x_2} cx_fun, ..., grad_{x_n} cx_fun]^T x = x0; obj = feval (obj_fun, x0); __sqp_nfun__ = 1; c = feval (obj_grd, x0); ## Choose an initial NxN symmetric positive definite Hessian approximation B. n = length (x0); if (have_hess) B = feval (obj_hess, x0); else B = eye (n, n); endif ce = feval (ce_fun, x0); F = feval (ce_grd, x0); ci = feval (ci_fun, x0); C = feval (ci_grd, x0); A = [F; C]; ## Choose an initial lambda (x is provided by the caller). lambda = 100 * ones (rows (A), 1); qp_iter = 1; alpha = 1; info = 0; iter = 0; # report (); # Called with no arguments to initialize reporting # report (iter, qp_iter, alpha, __sqp_nfun__, obj); while (++iter < iter_max) ## Check convergence. This is just a simple check on the first ## order necessary conditions. nr_f = rows (F); lambda_e = lambda((1:nr_f)'); lambda_i = lambda((nr_f+1:end)'); con = [ce; ci]; t0 = norm (c - A' * lambda); t1 = norm (ce); t2 = all (ci >= 0); t3 = all (lambda_i >= 0); t4 = norm (lambda .* con); if (t2 && t3 && max ([t0; t1; t4]) < tol) info = 101; break; endif ## Compute search direction p by solving QP. g = -ce; d = -ci; [p, obj_qp, INFO, lambda] = qp (x, B, c, F, g, [], [], d, C, Inf (size (d))); info = INFO.info; ## FIXME -- check QP solution and attempt to recover if it has ## failed. For now, just warn about possible problems. id = "Octave:SQP-QP-subproblem"; switch (info) case 2 warning (id, "sqp: QP subproblem is non-convex and unbounded"); case 3 warning (id, "sqp: QP subproblem failed to converge in %d iterations", INFO.solveiter); case 6 warning (id, "sqp: QP subproblem is infeasible"); endswitch ## Choose mu such that p is a descent direction for the chosen ## merit function phi. [x_new, alpha, obj_new] = linesearch_L1 (x, p, obj_fun, obj_grd, ce_fun, ci_fun, lambda, obj); ## Evaluate objective function, constraints, and gradients at x_new. c_new = feval (obj_grd, x_new); ce_new = feval (ce_fun, x_new); F_new = feval (ce_grd, x_new); ci_new = feval (ci_fun, x_new); C_new = feval (ci_grd, x_new); A_new = [F_new; C_new]; ## Set ## ## s = alpha * p ## y = grad_x L (x_new, lambda) - grad_x L (x, lambda}) y = c_new - c; if (! isempty (A)) t = ((A_new - A)'*lambda); y -= t; endif delx = x_new - x; if (norm (delx) < tol * norm (x)) info = 101; break; endif if (have_hess) B = feval (obj_hess, x); else ## Update B using a quasi-Newton formula. delxt = delx'; ## Damped BFGS. Or maybe we would actually want to use the Hessian ## of the Lagrangian, computed directly? d1 = delxt*B*delx; t1 = 0.2 * d1; t2 = delxt*y; if (t2 < t1) theta = 0.8*d1/(d1 - t2); else theta = 1; endif r = theta*y + (1-theta)*B*delx; d2 = delxt*r; if (d1 == 0 || d2 == 0) info = 102; break; endif B = B - B*delx*delxt*B/d1 + r*r'/d2; endif x = x_new; obj = obj_new; c = c_new; ce = ce_new; F = F_new; ci = ci_new; C = C_new; A = A_new; # report (iter, qp_iter, alpha, __sqp_nfun__, obj); endwhile if (iter >= iter_max) info = 103; endif nf = __sqp_nfun__; endfunction function [merit, obj] = phi_L1 (obj, obj_fun, ce_fun, ci_fun, x, mu) global __sqp_nfun__; ce = feval (ce_fun, x); ci = feval (ci_fun, x); idx = ci < 0; con = [ce; ci(idx)]; if (isempty (obj)) obj = feval (obj_fun, x); __sqp_nfun__++; endif merit = obj; t = norm (con, 1) / mu; if (! isempty (t)) merit += t; endif endfunction function [x_new, alpha, obj] = linesearch_L1 (x, p, obj_fun, obj_grd, ce_fun, ci_fun, lambda, obj) ## Choose parameters ## ## eta in the range (0, 0.5) ## tau in the range (0, 1) eta = 0.25; tau = 0.5; delta_bar = sqrt (eps); if (isempty (lambda)) mu = 1 / delta_bar; else mu = 1 / (norm (lambda, Inf) + delta_bar); endif alpha = 1; c = feval (obj_grd, x); ce = feval (ce_fun, x); [phi_x_mu, obj] = phi_L1 (obj, obj_fun, ce_fun, ci_fun, x, mu); D_phi_x_mu = c' * p; d = feval (ci_fun, x); ## only those elements of d corresponding ## to violated constraints should be included. idx = d < 0; t = - norm ([ce; d(idx)], 1) / mu; if (! isempty (t)) D_phi_x_mu += t; endif while (1) [p1, obj] = phi_L1 ([], obj_fun, ce_fun, ci_fun, x+alpha*p, mu); p2 = phi_x_mu+eta*alpha*D_phi_x_mu; if (p1 > p2) ## Reset alpha = tau_alpha * alpha for some tau_alpha in the ## range (0, tau). tau_alpha = 0.9 * tau; # ?? alpha = tau_alpha * alpha; else break; endif endwhile x_new = x + alpha * p; endfunction function grd = fdgrd (f, x) if (! isempty (f)) y0 = feval (f, x); nx = length (x); grd = zeros (nx, 1); deltax = sqrt (eps); for i = 1:nx t = x(i); x(i) += deltax; grd(i) = (feval (f, x) - y0) / deltax; x(i) = t; endfor else grd = zeros (0, 1); endif endfunction function jac = fdjac (f, x) nx = length (x); if (! isempty (f)) y0 = feval (f, x); nf = length (y0); nx = length (x); jac = zeros (nf, nx); deltax = sqrt (eps); for i = 1:nx t = x(i); x(i) += deltax; jac(:,i) = (feval (f, x) - y0) / deltax; x(i) = t; endfor else jac = zeros (0, nx); endif endfunction function grd = fd_obj_grd (x) global __sqp_obj_fun__; grd = fdgrd (__sqp_obj_fun__, x); endfunction function res = empty_cf (x) res = zeros (0, 1); endfunction function res = empty_jac (x) res = zeros (0, length (x)); endfunction function jac = fd_ce_jac (x) global __sqp_ce_fun__; jac = fdjac (__sqp_ce_fun__, x); endfunction function jac = fd_ci_jac (x) global __sqp_cifcn__; ## __sqp_cifcn__ = constraint function without gradients and lb or ub jac = fdjac (__sqp_cifcn__, x); endfunction function res = cf_ub_lb (x, lbidx, ubidx) ## combine constraint function with ub and lb global __sqp_cifcn__ __sqp_lb__ __sqp_ub__ if (isempty (__sqp_cifcn__)) res = [x(lbidx,1)-__sqp_lb__; __sqp_ub__-x(ubidx,1)]; else res = [feval(__sqp_cifcn__,x); \ x(lbidx,1)-__sqp_lb__; __sqp_ub__-x(ubidx,1)]; endif endfunction function res = cigrad_ub_lb (x, bgrad) global __sqp_cif__ cigradfcn = @fd_ci_jac; if (iscell (__sqp_cif__) && length (__sqp_cif__) > 1) cigradfcn = __sqp_cif__{2}; endif if (isempty (cigradfcn)) res = bgrad; else res = [feval(cigradfcn,x); bgrad]; endif endfunction # Utility function used to debug sqp function report (iter, qp_iter, alpha, nfun, obj) if (nargin == 0) printf (" Itn ItQP Step Nfun Objective\n"); else printf ("%5d %4d %8.1g %5d %13.6e\n", iter, qp_iter, alpha, nfun, obj); endif endfunction %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% Test Code %!function r = __g (x) %! r = [sumsq(x)-10; %! x(2)*x(3)-5*x(4)*x(5); %! x(1)^3+x(2)^3+1 ]; %!endfunction %! %!function obj = __phi (x) %! obj = exp (prod (x)) - 0.5*(x(1)^3 + x(2)^3 + 1)^2; %!endfunction %! %!test %! %! x0 = [-1.8; 1.7; 1.9; -0.8; -0.8]; %! %! [x, obj, info, iter, nf, lambda] = sqp (x0, @__phi, @__g, []); %! %! x_opt = [-1.717143501952599; %! 1.595709610928535; %! 1.827245880097156; %! -0.763643103133572; %! -0.763643068453300]; %! %! obj_opt = 0.0539498477702739; %! %! assert (x, x_opt, 5*sqrt (eps)); %! assert (obj, obj_opt, sqrt (eps)); %% Test input validation %!error sqp () %!error sqp (1) %!error sqp (1,2,3,4,5,6,7,8,9) %!error sqp (1,2,3,4,5) %!error sqp (ones (2,2)) %!error sqp (1, cell (4,1)) %!error sqp (1, cell (3,1), cell (3,1)) %!error sqp (1, cell (3,1), cell (2,1), cell (3,1)) %!error sqp (1, cell (3,1), cell (2,1), cell (2,1), ones (2,2),[]) %!error sqp (1, cell (3,1), cell (2,1), cell (2,1),[], ones (2,2)) %!error sqp (1, cell (3,1), cell (2,1), cell (2,1),1,-1) %!error sqp (1, cell (3,1), cell (2,1), cell (2,1),[],[], ones (2,2)) %!error sqp (1, cell (3,1), cell (2,1), cell (2,1),[],[],-1) %!error sqp (1, cell (3,1), cell (2,1), cell (2,1),[],[],1.5) %!error sqp (1, cell (3,1), cell (2,1), cell (2,1),[],[],[], ones (2,2)) %!error sqp (1, cell (3,1), cell (2,1), cell (2,1),[],[],[],-1)