Mercurial > hg > octave-lyh
view scripts/polynomial/spline.m @ 14363:f3d52523cde1
Use Octave coding conventions in all m-file %!test blocks
* wavread.m, acosd.m, acot.m, acotd.m, acoth.m, acsc.m, acscd.m, acsch.m,
asec.m, asecd.m, asech.m, asind.m, atand.m, cosd.m, cot.m, cotd.m, coth.m,
csc.m, cscd.m, csch.m, sec.m, secd.m, sech.m, sind.m, tand.m, accumarray.m,
accumdim.m, bitcmp.m, bitget.m, bitset.m, blkdiag.m, cart2pol.m, cart2sph.m,
celldisp.m, chop.m, circshift.m, colon.m, common_size.m, cplxpair.m,
cumtrapz.m, curl.m, dblquad.m, deal.m, divergence.m, flipdim.m, fliplr.m,
flipud.m, genvarname.m, gradient.m, idivide.m, int2str.m, interp1.m,
interp1q.m, interp2.m, interp3.m, interpft.m, interpn.m, isa.m, isdir.m,
isequal.m, isequalwithequalnans.m, issquare.m, logspace.m, nargchk.m,
narginchk.m, nargoutchk.m, nextpow2.m, nthargout.m, num2str.m, pol2cart.m,
polyarea.m, postpad.m, prepad.m, profile.m, profshow.m, quadgk.m, quadv.m,
randi.m, rat.m, repmat.m, rot90.m, rotdim.m, shift.m, shiftdim.m, sph2cart.m,
structfun.m, trapz.m, triplequad.m, convhull.m, dsearch.m, dsearchn.m,
griddata3.m, griddatan.m, rectint.m, tsearchn.m, __makeinfo__.m, doc.m,
get_first_help_sentence.m, help.m, type.m, unimplemented.m, which.m, imread.m,
imwrite.m, dlmwrite.m, fileread.m, is_valid_file_id.m, strread.m, textread.m,
textscan.m, commutation_matrix.m, cond.m, condest.m, cross.m,
duplication_matrix.m, expm.m, housh.m, isdefinite.m, ishermitian.m,
issymmetric.m, logm.m, normest.m, null.m, onenormest.m, orth.m, planerot.m,
qzhess.m, rank.m, rref.m, trace.m, vech.m, ans.m, bincoeff.m, bug_report.m,
bzip2.m, comma.m, compare_versions.m, computer.m, edit.m, fileparts.m,
fullfile.m, getfield.m, gzip.m, info.m, inputname.m, isappdata.m, isdeployed.m,
ismac.m, ispc.m, isunix.m, list_primes.m, ls.m, mexext.m, namelengthmax.m,
news.m, orderfields.m, paren.m, recycle.m, rmappdata.m, semicolon.m,
setappdata.m, setfield.m, substruct.m, symvar.m, ver.m, version.m,
warning_ids.m, xor.m, fminbnd.m, fsolve.m, fzero.m, lsqnonneg.m, optimset.m,
pqpnonneg.m, sqp.m, matlabroot.m, __gnuplot_drawnow__.m,
__plt_get_axis_arg__.m, ancestor.m, cla.m, clf.m, close.m, colorbar.m,
colstyle.m, comet3.m, contourc.m, figure.m, gca.m, gcbf.m, gcbo.m, gcf.m,
ginput.m, graphics_toolkit.m, gtext.m, hggroup.m, hist.m, hold.m, isfigure.m,
ishghandle.m, ishold.m, isocolors.m, isonormals.m, isosurface.m, isprop.m,
legend.m, line.m, loglog.m, loglogerr.m, meshgrid.m, ndgrid.m, newplot.m,
orient.m, patch.m, plot3.m, plotyy.m, __print_parse_opts__.m, quiver3.m,
refreshdata.m, ribbon.m, semilogx.m, semilogxerr.m, semilogy.m, stem.m,
stem3.m, subplot.m, title.m, uigetfile.m, view.m, whitebg.m, compan.m, conv.m,
deconv.m, mkpp.m, mpoles.m, pchip.m, poly.m, polyaffine.m, polyder.m,
polyfit.m, polygcd.m, polyint.m, polyout.m, polyval.m, polyvalm.m, ppder.m,
ppint.m, ppjumps.m, ppval.m, residue.m, roots.m, spline.m, intersect.m,
ismember.m, powerset.m, setdiff.m, setxor.m, union.m, unique.m,
autoreg_matrix.m, bartlett.m, blackman.m, detrend.m, fftconv.m, fftfilt.m,
fftshift.m, freqz.m, hamming.m, hanning.m, ifftshift.m, sinc.m, sinetone.m,
sinewave.m, unwrap.m, bicg.m, bicgstab.m, gmres.m, gplot.m, nonzeros.m, pcg.m,
pcr.m, spaugment.m, spconvert.m, spdiags.m, speye.m, spfun.m, spones.m,
sprand.m, sprandsym.m, spstats.m, spy.m, svds.m, treelayout.m, bessel.m,
beta.m, betaln.m, factor.m, factorial.m, isprime.m, lcm.m, legendre.m,
nchoosek.m, nthroot.m, perms.m, pow2.m, primes.m, reallog.m, realpow.m,
realsqrt.m, hadamard.m, hankel.m, hilb.m, invhilb.m, magic.m, rosser.m,
vander.m, __finish__.m, center.m, cloglog.m, corr.m, cov.m, gls.m, histc.m,
iqr.m, kendall.m, kurtosis.m, logit.m, mahalanobis.m, mean.m, meansq.m,
median.m, mode.m, moment.m, ols.m, ppplot.m, prctile.m, probit.m, quantile.m,
range.m, ranks.m, run_count.m, runlength.m, skewness.m, spearman.m,
statistics.m, std.m, table.m, var.m, zscore.m, betacdf.m, betainv.m, betapdf.m,
betarnd.m, binocdf.m, binoinv.m, binopdf.m, binornd.m, cauchy_cdf.m,
cauchy_inv.m, cauchy_pdf.m, cauchy_rnd.m, chi2cdf.m, chi2inv.m, chi2pdf.m,
chi2rnd.m, discrete_cdf.m, discrete_inv.m, discrete_pdf.m, discrete_rnd.m,
empirical_cdf.m, empirical_inv.m, empirical_pdf.m, empirical_rnd.m, expcdf.m,
expinv.m, exppdf.m, exprnd.m, fcdf.m, finv.m, fpdf.m, frnd.m, gamcdf.m,
gaminv.m, gampdf.m, gamrnd.m, geocdf.m, geoinv.m, geopdf.m, geornd.m,
hygecdf.m, hygeinv.m, hygepdf.m, hygernd.m, kolmogorov_smirnov_cdf.m,
laplace_cdf.m, laplace_inv.m, laplace_pdf.m, laplace_rnd.m, logistic_cdf.m,
logistic_inv.m, logistic_pdf.m, logistic_rnd.m, logncdf.m, logninv.m,
lognpdf.m, lognrnd.m, nbincdf.m, nbininv.m, nbinpdf.m, nbinrnd.m, normcdf.m,
norminv.m, normpdf.m, normrnd.m, poisscdf.m, poissinv.m, poisspdf.m,
poissrnd.m, stdnormal_cdf.m, stdnormal_inv.m, stdnormal_pdf.m, stdnormal_rnd.m,
tcdf.m, tinv.m, tpdf.m, trnd.m, unidcdf.m, unidinv.m, unidpdf.m, unidrnd.m,
unifcdf.m, unifinv.m, unifpdf.m, unifrnd.m, wblcdf.m, wblinv.m, wblpdf.m,
wblrnd.m, kolmogorov_smirnov_test.m, kruskal_wallis_test.m, base2dec.m,
bin2dec.m, blanks.m, cstrcat.m, deblank.m, dec2base.m, dec2bin.m, dec2hex.m,
findstr.m, hex2dec.m, index.m, isletter.m, mat2str.m, rindex.m, str2num.m,
strcat.m, strjust.m, strmatch.m, strsplit.m, strtok.m, strtrim.m, strtrunc.m,
substr.m, validatestring.m, demo.m, example.m, fail.m, speed.m, addtodate.m,
asctime.m, clock.m, ctime.m, date.m, datenum.m, datetick.m, datevec.m,
eomday.m, etime.m, is_leap_year.m, now.m:
Use Octave coding conventions in all m-file %!test blocks
author | Rik <octave@nomad.inbox5.com> |
---|---|
date | Mon, 13 Feb 2012 07:29:44 -0800 |
parents | 11949c9795a0 |
children | 2e23cd0a9e40 |
line wrap: on
line source
## Copyright (C) 2000-2012 Kai Habel ## Copyright (C) 2006 David Bateman ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {@var{pp} =} spline (@var{x}, @var{y}) ## @deftypefnx {Function File} {@var{yi} =} spline (@var{x}, @var{y}, @var{xi}) ## Return the cubic spline interpolant of points @var{x} and @var{y}. ## ## When called with two arguments, return the piecewise polynomial @var{pp} ## that may be used with @code{ppval} to evaluate the polynomial at specific ## points. When called with a third input argument, @code{spline} evaluates ## the spline at the points @var{xi}. The third calling form @code{spline ## (@var{x}, @var{y}, @var{xi})} is equivalent to @code{ppval (spline ## (@var{x}, @var{y}), @var{xi})}. ## ## The variable @var{x} must be a vector of length @var{n}. @var{y} can be ## either a vector or array. If @var{y} is a vector it must have a length of ## either @var{n} or @code{@var{n} + 2}. If the length of @var{y} is ## @var{n}, then the "not-a-knot" end condition is used. If the length of ## @var{y} is @code{@var{n} + 2}, then the first and last values of the ## vector @var{y} are the values of the first derivative of the cubic spline ## at the endpoints. ## ## If @var{y} is an array, then the size of @var{y} must have the form ## @tex ## $$[s_1, s_2, \cdots, s_k, n]$$ ## @end tex ## @ifnottex ## @code{[@var{s1}, @var{s2}, @dots{}, @var{sk}, @var{n}]} ## @end ifnottex ## or ## @tex ## $$[s_1, s_2, \cdots, s_k, n + 2].$$ ## @end tex ## @ifnottex ## @code{[@var{s1}, @var{s2}, @dots{}, @var{sk}, @var{n} + 2]}. ## @end ifnottex ## The array is reshaped internally to a matrix where the leading ## dimension is given by ## @tex ## $$s_1 s_2 \cdots s_k$$ ## @end tex ## @ifnottex ## @code{@var{s1} * @var{s2} * @dots{} * @var{sk}} ## @end ifnottex ## and each row of this matrix is then treated separately. Note that this ## is exactly opposite to @code{interp1} but is done for @sc{matlab} ## compatibility. ## ## @seealso{pchip, ppval, mkpp, unmkpp} ## @end deftypefn ## This code is based on csape.m from octave-forge, but has been ## modified to use the sparse solver code in octave that itself allows ## special casing of tri-diagonal matrices, modified for NDArrays and ## for the treatment of vectors y 2 elements longer than x as complete ## splines. function ret = spline (x, y, xi) x = x(:); n = length (x); if (n < 2) error ("spline: requires at least 2 points"); endif ## Check the size and shape of y ndy = ndims (y); szy = size (y); if (ndy == 2 && (szy(1) == n || szy(2) == n)) if (szy(2) == n) a = y.'; else a = y; szy = fliplr (szy); endif else a = shiftdim (reshape (y, [prod(szy(1:end-1)), szy(end)]), 1); endif for k = (1:columns (a))(any (isnan (a))) ok = ! isnan (a(:,k)); a(!ok,k) = spline (x(ok), a(ok,k), x(!ok)); endfor complete = false; if (size (a, 1) == n + 2) complete = true; dfs = a(1,:); dfe = a(end,:); a = a(2:end-1,:); endif if (! issorted (x)) [x, idx] = sort(x); a = a(idx,:); endif b = c = zeros (size (a)); h = diff (x); idx = ones (columns (a), 1); if (complete) if (n == 2) d = (dfs + dfe) / (x(2) - x(1)) ^ 2 + ... 2 * (a(1,:) - a(2,:)) / (x(2) - x(1)) ^ 3; c = (-2 * dfs - dfe) / (x(2) - x(1)) - ... 3 * (a(1,:) - a(2,:)) / (x(2) - x(1)) ^ 2; b = dfs; a = a(1,:); d = d(1:n-1,:); c = c(1:n-1,:); b = b(1:n-1,:); a = a(1:n-1,:); else if (n == 3) dg = 1.5 * h(1) - 0.5 * h(2); c(2:n-1,:) = 1/dg(1); else dg = 2 * (h(1:n-2) .+ h(2:n-1)); dg(1) = dg(1) - 0.5 * h(1); dg(n-2) = dg(n-2) - 0.5 * h(n-1); e = h(2:n-2); g = 3 * diff (a(2:n,:)) ./ h(2:n-1,idx) ... - 3 * diff (a(1:n-1,:)) ./ h(1:n-2,idx); g(1,:) = 3 * (a(3,:) - a(2,:)) / h(2) ... - 3 / 2 * (3 * (a(2,:) - a(1,:)) / h(1) - dfs); g(n-2,:) = 3 / 2 * (3 * (a(n,:) - a(n-1,:)) / h(n-1) - dfe) ... - 3 * (a(n-1,:) - a(n-2,:)) / h(n-2); c(2:n-1,:) = spdiags ([[e(:); 0], dg, [0; e(:)]], [-1, 0, 1], n-2, n-2) \ g; endif c(1,:) = (3 / h(1) * (a(2,:) - a(1,:)) - 3 * dfs - c(2,:) * h(1)) / (2 * h(1)); c(n,:) = - (3 / h(n-1) * (a(n,:) - a(n-1,:)) - 3 * dfe + c(n-1,:) * h(n-1)) / (2 * h(n-1)); b(1:n-1,:) = diff (a) ./ h(1:n-1, idx) ... - h(1:n-1,idx) / 3 .* (c(2:n,:) + 2 * c(1:n-1,:)); d = diff (c) ./ (3 * h(1:n-1, idx)); d = d(1:n-1,:); c = c(1:n-1,:); b = b(1:n-1,:); a = a(1:n-1,:); endif else if (n == 2) b = (a(2,:) - a(1,:)) / (x(2) - x(1)); a = a(1,:); d = []; c = []; b = b(1:n-1,:); a = a(1:n-1,:); elseif (n == 3) n = 2; c = (a(1,:) - a(3,:)) / ((x(3) - x(1)) * (x(2) - x(3))) ... + (a(2,:) - a(1,:)) / ((x(2) - x(1)) * (x(2) - x(3))); b = (a(2,:) - a(1,:)) * (x(3) - x(1)) ... / ((x(2) - x(1)) * (x(3) - x(2))) ... + (a(1,:) - a(3,:)) * (x(2) - x(1)) ... / ((x(3) - x(1)) * (x(3) - x(2))); a = a(1,:); d = []; x = [min(x), max(x)]; c = c(1:n-1,:); b = b(1:n-1,:); a = a(1:n-1,:); else g = zeros (n-2, columns (a)); g(1,:) = 3 / (h(1) + h(2)) ... * (a(3,:) - a(2,:) - h(2) / h(1) * (a(2,:) - a(1,:))); g(n-2,:) = 3 / (h(n-1) + h(n-2)) ... * (h(n-2) / h(n-1) * (a(n,:) - a(n-1,:)) - (a(n-1,:) - a(n-2,:))); if (n > 4) g(2:n - 3,:) = 3 * diff (a(3:n-1,:)) ./ h(3:n-2,idx) ... - 3 * diff (a(2:n-2,:)) ./ h(2:n - 3,idx); dg = 2 * (h(1:n-2) .+ h(2:n-1)); dg(1) = dg(1) - h(1); dg(n-2) = dg(n-2) - h(n-1); ldg = udg = h(2:n-2); udg(1) = udg(1) - h(1); ldg(n - 3) = ldg(n-3) - h(n-1); c(2:n-1,:) = spdiags ([[ldg(:); 0], dg, [0; udg(:)]], [-1, 0, 1], n-2, n-2) \ g; elseif (n == 4) dg = [h(1) + 2 * h(2); 2 * h(2) + h(3)]; ldg = h(2) - h(3); udg = h(2) - h(1); c(2:n-1,:) = spdiags ([[ldg(:);0], dg, [0; udg(:)]], [-1, 0, 1], n-2, n-2) \ g; endif c(1,:) = c(2,:) + h(1) / h(2) * (c(2,:) - c(3,:)); c(n,:) = c(n-1,:) + h(n-1) / h(n-2) * (c(n-1,:) - c(n-2,:)); b = diff (a) ./ h(1:n-1, idx) ... - h(1:n-1, idx) / 3 .* (c(2:n,:) + 2 * c(1:n-1,:)); d = diff (c) ./ (3 * h(1:n-1, idx)); d = d(1:n-1,:);d = d.'(:); c = c(1:n-1,:);c = c.'(:); b = b(1:n-1,:);b = b.'(:); a = a(1:n-1,:);a = a.'(:); endif endif ret = mkpp (x, cat (2, d, c, b, a), szy(1:end-1)); if (nargin == 3) ret = ppval (ret, xi); endif endfunction %!demo %! x = 0:10; y = sin (x); %! xspline = 0:0.1:10; yspline = spline (x,y,xspline); %! title ("spline fit to points from sin (x)"); %! plot (xspline,sin(xspline),"r", xspline,yspline,"g-", x,y,"b+"); %! legend ("original", "interpolation", "interpolation points"); %! %-------------------------------------------------------- %! % confirm that interpolated function matches the original %!shared x,y,abserr %! x = [0:10]; y = sin (x); abserr = 1e-14; %!assert (spline (x,y,x), y, abserr) %!assert (spline (x,y,x'), y', abserr) %!assert (spline (x',y',x'), y', abserr) %!assert (spline (x',y',x), y, abserr) %!assert (isempty (spline (x',y',[]))) %!assert (isempty (spline (x,y,[]))) %!assert (spline (x,[y;y],x), [spline(x,y,x);spline(x,y,x)], abserr) %!assert (spline (x,[y;y],x'), [spline(x,y,x);spline(x,y,x)], abserr) %!assert (spline (x',[y;y],x), [spline(x,y,x);spline(x,y,x)], abserr) %!assert (spline (x',[y;y],x'), [spline(x,y,x);spline(x,y,x)], abserr) %! y = cos (x) + i*sin (x); %!assert (spline (x,y,x), y, abserr) %!assert (real (spline (x,y,x)), real (y), abserr) %!assert (real (spline (x,y,x.')), real (y).', abserr) %!assert (real (spline (x.',y.',x.')), real (y).', abserr) %!assert (real (spline (x.',y,x)), real (y), abserr) %!assert (imag (spline (x,y,x)), imag (y), abserr) %!assert (imag (spline (x,y,x.')), imag (y).', abserr) %!assert (imag (spline (x.',y.',x.')), imag (y).', abserr) %!assert (imag (spline (x.',y,x)), imag (y), abserr) %!test %! xnan = 5; %! y(x==xnan) = NaN; %! ok = ! isnan (y); %! assert (spline (x, y, x(ok)), y(ok), abserr); %!test %! ok = ! isnan (y); %! assert (! isnan (spline (x, y, x(!ok)))); %!test %! x = [1,2]; %! y = [1,4]; %! assert (spline (x,y,x), [1,4], abserr); %!test %! x = [2,1]; %! y = [1,4]; %! assert (spline (x,y,x), [1,4], abserr); %!test %! x = [1,2]; %! y = [1,2,3,4]; %! pp = spline (x,y); %! [x,P] = unmkpp (pp); %! assert (norm (P-[3,-3,1,2]), 0, abserr); %!test %! x = [2,1]; %! y = [1,2,3,4]; %! pp = spline (x,y); %! [x,P] = unmkpp (pp); %! assert (norm (P-[7,-9,1,3]), 0, abserr);