Mercurial > hg > octave-lyh
view scripts/specfun/legendre.m @ 14363:f3d52523cde1
Use Octave coding conventions in all m-file %!test blocks
* wavread.m, acosd.m, acot.m, acotd.m, acoth.m, acsc.m, acscd.m, acsch.m,
asec.m, asecd.m, asech.m, asind.m, atand.m, cosd.m, cot.m, cotd.m, coth.m,
csc.m, cscd.m, csch.m, sec.m, secd.m, sech.m, sind.m, tand.m, accumarray.m,
accumdim.m, bitcmp.m, bitget.m, bitset.m, blkdiag.m, cart2pol.m, cart2sph.m,
celldisp.m, chop.m, circshift.m, colon.m, common_size.m, cplxpair.m,
cumtrapz.m, curl.m, dblquad.m, deal.m, divergence.m, flipdim.m, fliplr.m,
flipud.m, genvarname.m, gradient.m, idivide.m, int2str.m, interp1.m,
interp1q.m, interp2.m, interp3.m, interpft.m, interpn.m, isa.m, isdir.m,
isequal.m, isequalwithequalnans.m, issquare.m, logspace.m, nargchk.m,
narginchk.m, nargoutchk.m, nextpow2.m, nthargout.m, num2str.m, pol2cart.m,
polyarea.m, postpad.m, prepad.m, profile.m, profshow.m, quadgk.m, quadv.m,
randi.m, rat.m, repmat.m, rot90.m, rotdim.m, shift.m, shiftdim.m, sph2cart.m,
structfun.m, trapz.m, triplequad.m, convhull.m, dsearch.m, dsearchn.m,
griddata3.m, griddatan.m, rectint.m, tsearchn.m, __makeinfo__.m, doc.m,
get_first_help_sentence.m, help.m, type.m, unimplemented.m, which.m, imread.m,
imwrite.m, dlmwrite.m, fileread.m, is_valid_file_id.m, strread.m, textread.m,
textscan.m, commutation_matrix.m, cond.m, condest.m, cross.m,
duplication_matrix.m, expm.m, housh.m, isdefinite.m, ishermitian.m,
issymmetric.m, logm.m, normest.m, null.m, onenormest.m, orth.m, planerot.m,
qzhess.m, rank.m, rref.m, trace.m, vech.m, ans.m, bincoeff.m, bug_report.m,
bzip2.m, comma.m, compare_versions.m, computer.m, edit.m, fileparts.m,
fullfile.m, getfield.m, gzip.m, info.m, inputname.m, isappdata.m, isdeployed.m,
ismac.m, ispc.m, isunix.m, list_primes.m, ls.m, mexext.m, namelengthmax.m,
news.m, orderfields.m, paren.m, recycle.m, rmappdata.m, semicolon.m,
setappdata.m, setfield.m, substruct.m, symvar.m, ver.m, version.m,
warning_ids.m, xor.m, fminbnd.m, fsolve.m, fzero.m, lsqnonneg.m, optimset.m,
pqpnonneg.m, sqp.m, matlabroot.m, __gnuplot_drawnow__.m,
__plt_get_axis_arg__.m, ancestor.m, cla.m, clf.m, close.m, colorbar.m,
colstyle.m, comet3.m, contourc.m, figure.m, gca.m, gcbf.m, gcbo.m, gcf.m,
ginput.m, graphics_toolkit.m, gtext.m, hggroup.m, hist.m, hold.m, isfigure.m,
ishghandle.m, ishold.m, isocolors.m, isonormals.m, isosurface.m, isprop.m,
legend.m, line.m, loglog.m, loglogerr.m, meshgrid.m, ndgrid.m, newplot.m,
orient.m, patch.m, plot3.m, plotyy.m, __print_parse_opts__.m, quiver3.m,
refreshdata.m, ribbon.m, semilogx.m, semilogxerr.m, semilogy.m, stem.m,
stem3.m, subplot.m, title.m, uigetfile.m, view.m, whitebg.m, compan.m, conv.m,
deconv.m, mkpp.m, mpoles.m, pchip.m, poly.m, polyaffine.m, polyder.m,
polyfit.m, polygcd.m, polyint.m, polyout.m, polyval.m, polyvalm.m, ppder.m,
ppint.m, ppjumps.m, ppval.m, residue.m, roots.m, spline.m, intersect.m,
ismember.m, powerset.m, setdiff.m, setxor.m, union.m, unique.m,
autoreg_matrix.m, bartlett.m, blackman.m, detrend.m, fftconv.m, fftfilt.m,
fftshift.m, freqz.m, hamming.m, hanning.m, ifftshift.m, sinc.m, sinetone.m,
sinewave.m, unwrap.m, bicg.m, bicgstab.m, gmres.m, gplot.m, nonzeros.m, pcg.m,
pcr.m, spaugment.m, spconvert.m, spdiags.m, speye.m, spfun.m, spones.m,
sprand.m, sprandsym.m, spstats.m, spy.m, svds.m, treelayout.m, bessel.m,
beta.m, betaln.m, factor.m, factorial.m, isprime.m, lcm.m, legendre.m,
nchoosek.m, nthroot.m, perms.m, pow2.m, primes.m, reallog.m, realpow.m,
realsqrt.m, hadamard.m, hankel.m, hilb.m, invhilb.m, magic.m, rosser.m,
vander.m, __finish__.m, center.m, cloglog.m, corr.m, cov.m, gls.m, histc.m,
iqr.m, kendall.m, kurtosis.m, logit.m, mahalanobis.m, mean.m, meansq.m,
median.m, mode.m, moment.m, ols.m, ppplot.m, prctile.m, probit.m, quantile.m,
range.m, ranks.m, run_count.m, runlength.m, skewness.m, spearman.m,
statistics.m, std.m, table.m, var.m, zscore.m, betacdf.m, betainv.m, betapdf.m,
betarnd.m, binocdf.m, binoinv.m, binopdf.m, binornd.m, cauchy_cdf.m,
cauchy_inv.m, cauchy_pdf.m, cauchy_rnd.m, chi2cdf.m, chi2inv.m, chi2pdf.m,
chi2rnd.m, discrete_cdf.m, discrete_inv.m, discrete_pdf.m, discrete_rnd.m,
empirical_cdf.m, empirical_inv.m, empirical_pdf.m, empirical_rnd.m, expcdf.m,
expinv.m, exppdf.m, exprnd.m, fcdf.m, finv.m, fpdf.m, frnd.m, gamcdf.m,
gaminv.m, gampdf.m, gamrnd.m, geocdf.m, geoinv.m, geopdf.m, geornd.m,
hygecdf.m, hygeinv.m, hygepdf.m, hygernd.m, kolmogorov_smirnov_cdf.m,
laplace_cdf.m, laplace_inv.m, laplace_pdf.m, laplace_rnd.m, logistic_cdf.m,
logistic_inv.m, logistic_pdf.m, logistic_rnd.m, logncdf.m, logninv.m,
lognpdf.m, lognrnd.m, nbincdf.m, nbininv.m, nbinpdf.m, nbinrnd.m, normcdf.m,
norminv.m, normpdf.m, normrnd.m, poisscdf.m, poissinv.m, poisspdf.m,
poissrnd.m, stdnormal_cdf.m, stdnormal_inv.m, stdnormal_pdf.m, stdnormal_rnd.m,
tcdf.m, tinv.m, tpdf.m, trnd.m, unidcdf.m, unidinv.m, unidpdf.m, unidrnd.m,
unifcdf.m, unifinv.m, unifpdf.m, unifrnd.m, wblcdf.m, wblinv.m, wblpdf.m,
wblrnd.m, kolmogorov_smirnov_test.m, kruskal_wallis_test.m, base2dec.m,
bin2dec.m, blanks.m, cstrcat.m, deblank.m, dec2base.m, dec2bin.m, dec2hex.m,
findstr.m, hex2dec.m, index.m, isletter.m, mat2str.m, rindex.m, str2num.m,
strcat.m, strjust.m, strmatch.m, strsplit.m, strtok.m, strtrim.m, strtrunc.m,
substr.m, validatestring.m, demo.m, example.m, fail.m, speed.m, addtodate.m,
asctime.m, clock.m, ctime.m, date.m, datenum.m, datetick.m, datevec.m,
eomday.m, etime.m, is_leap_year.m, now.m:
Use Octave coding conventions in all m-file %!test blocks
author | Rik <octave@nomad.inbox5.com> |
---|---|
date | Mon, 13 Feb 2012 07:29:44 -0800 |
parents | 4d917a6a858b |
children | 5d3a684236b0 |
line wrap: on
line source
## Copyright (C) 2000-2012 Kai Habel ## Copyright (C) 2008 Marco Caliari ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {@var{l} =} legendre (@var{n}, @var{x}) ## @deftypefnx {Function File} {@var{l} =} legendre (@var{n}, @var{x}, @var{normalization}) ## Compute the Legendre function of degree @var{n} and order ## @var{m} = 0 @dots{} N@. The optional argument, @var{normalization}, ## may be one of @code{"unnorm"}, @code{"sch"}, or @code{"norm"}. ## The default is @code{"unnorm"}. The value of @var{n} must be a ## non-negative scalar integer. ## ## If the optional argument @var{normalization} is missing or is ## @code{"unnorm"}, compute the Legendre function of degree @var{n} and ## order @var{m} and return all values for @var{m} = 0 @dots{} @var{n}. ## The return value has one dimension more than @var{x}. ## ## The Legendre Function of degree @var{n} and order @var{m}: ## ## @tex ## $$ ## P^m_n(x) = (-1)^m (1-x^2)^{m/2}{d^m\over {dx^m}}P_n (x) ## $$ ## @end tex ## @ifnottex ## ## @example ## @group ## m m 2 m/2 d^m ## P(x) = (-1) * (1-x ) * ---- P(x) ## n dx^m n ## @end group ## @end example ## ## @end ifnottex ## ## @noindent ## with Legendre polynomial of degree @var{n}: ## ## @tex ## $$ ## P(x) = {1\over{2^n n!}}\biggl({d^n\over{dx^n}}(x^2 - 1)^n\biggr) ## $$ ## @end tex ## @ifnottex ## ## @example ## @group ## 1 d^n 2 n ## P(x) = ------ [----(x - 1) ] ## n 2^n n! dx^n ## @end group ## @end example ## ## @end ifnottex ## ## @noindent ## @code{legendre (3, [-1.0, -0.9, -0.8])} returns the matrix: ## ## @example ## @group ## x | -1.0 | -0.9 | -0.8 ## ------------------------------------ ## m=0 | -1.00000 | -0.47250 | -0.08000 ## m=1 | 0.00000 | -1.99420 | -1.98000 ## m=2 | 0.00000 | -2.56500 | -4.32000 ## m=3 | 0.00000 | -1.24229 | -3.24000 ## @end group ## @end example ## ## If the optional argument @code{normalization} is @code{"sch"}, ## compute the Schmidt semi-normalized associated Legendre function. ## The Schmidt semi-normalized associated Legendre function is related ## to the unnormalized Legendre functions by the following: ## ## For Legendre functions of degree n and order 0: ## ## @tex ## $$ ## SP^0_n (x) = P^0_n (x) ## $$ ## @end tex ## @ifnottex ## ## @example ## @group ## 0 0 ## SP(x) = P(x) ## n n ## @end group ## @end example ## ## @end ifnottex ## ## For Legendre functions of degree n and order m: ## ## @tex ## $$ ## SP^m_n (x) = P^m_n (x)(-1)^m\biggl({2(n-m)!\over{(n+m)!}}\biggl)^{0.5} ## $$ ## @end tex ## @ifnottex ## ## @example ## @group ## m m m 2(n-m)! 0.5 ## SP(x) = P(x) * (-1) * [-------] ## n n (n+m)! ## @end group ## @end example ## ## @end ifnottex ## ## If the optional argument @var{normalization} is @code{"norm"}, ## compute the fully normalized associated Legendre function. ## The fully normalized associated Legendre function is related ## to the unnormalized Legendre functions by the following: ## ## For Legendre functions of degree @var{n} and order @var{m} ## ## @tex ## $$ ## NP^m_n (x) = P^m_n (x)(-1)^m\biggl({(n+0.5)(n-m)!\over{(n+m)!}}\biggl)^{0.5} ## $$ ## @end tex ## @ifnottex ## ## @example ## @group ## m m m (n+0.5)(n-m)! 0.5 ## NP(x) = P(x) * (-1) * [-------------] ## n n (n+m)! ## @end group ## @end example ## ## @end ifnottex ## @end deftypefn ## Author: Marco Caliari <marco.caliari@univr.it> function retval = legendre (n, x, normalization) persistent warned_overflow = false; if (nargin < 2 || nargin > 3) print_usage (); endif if (!isscalar (n) || n < 0 || n != fix (n)) error ("legendre: N must be a non-negative scalar integer"); endif if (!isreal (x) || any (x(:) < -1 | x(:) > 1)) error ("legendre: X must be real-valued vector in the range -1 <= X <= 1"); endif if (nargin == 3) normalization = lower (normalization); else normalization = "unnorm"; endif switch (normalization) case "norm" scale = sqrt (n+0.5); case "sch" scale = sqrt (2); case "unnorm" scale = 1; otherwise error ('legendre: expecting NORMALIZATION option to be "norm", "sch", or "unnorm"'); endswitch scale = scale * ones (size (x)); ## Based on the recurrence relation below ## m m m ## (n-m+1) * P (x) = (2*n+1)*x*P (x) - (n+1)*P (x) ## n+1 n n-1 ## http://en.wikipedia.org/wiki/Associated_Legendre_function overflow = false; retval = zeros([n+1, size(x)]); for m = 1:n lpm1 = scale; lpm2 = (2*m-1) .* x .* scale; lpm3 = lpm2; for k = m+1:n lpm3a = (2*k-1) .* x .* lpm2; lpm3b = (k+m-2) .* lpm1; lpm3 = (lpm3a - lpm3b)/(k-m+1); lpm1 = lpm2; lpm2 = lpm3; if (! warned_overflow) if (any (abs (lpm3a) > realmax) || any (abs (lpm3b) > realmax) || any (abs (lpm3) > realmax)) overflow = true; endif endif endfor retval(m,:) = lpm3(:); if (strcmp (normalization, "unnorm")) scale = -scale * (2*m-1); else ## normalization == "sch" or normalization == "norm" scale = scale / sqrt ((n-m+1)*(n+m))*(2*m-1); endif scale = scale .* sqrt(1-x.^2); endfor retval(n+1,:) = scale(:); if (isvector (x)) ## vector case is special retval = reshape (retval, n + 1, length (x)); endif if (strcmp (normalization, "sch")) retval(1,:) = retval(1,:) / sqrt (2); endif if (overflow && ! warned_overflow) warning ("legendre: overflow - results may be unstable for high orders"); warned_overflow = true; endif endfunction %!test %! result = legendre (3, [-1.0 -0.9 -0.8]); %! expected = [ %! -1.00000 -0.47250 -0.08000 %! 0.00000 -1.99420 -1.98000 %! 0.00000 -2.56500 -4.32000 %! 0.00000 -1.24229 -3.24000 %! ]; %! assert (result, expected, 1e-5); %!test %! result = legendre (3, [-1.0 -0.9 -0.8], "sch"); %! expected = [ %! -1.00000 -0.47250 -0.08000 %! 0.00000 0.81413 0.80833 %! -0.00000 -0.33114 -0.55771 %! 0.00000 0.06547 0.17076 %! ]; %! assert (result, expected, 1e-5); %!test %! result = legendre (3, [-1.0 -0.9 -0.8], "norm"); %! expected = [ %! -1.87083 -0.88397 -0.14967 %! 0.00000 1.07699 1.06932 %! -0.00000 -0.43806 -0.73778 %! 0.00000 0.08661 0.22590 %! ]; %! assert (result, expected, 1e-5); %!test %! result = legendre (151, 0); %! ## Don't compare to "-Inf" since it would fail on 64 bit systems. %! assert (result(end) < -1.7976e308 && all (isfinite (result(1:end-1)))); %!test %! result = legendre (150, 0); %! ## This agrees with Matlab's result. %! assert (result(end), 3.7532741115719e+306, 0.0000000000001e+306); %!test %! result = legendre (0, 0:0.1:1); %! assert (result, full (ones (1,11))); %!test %! result = legendre (3, [-1,0,1;1,0,-1]); %! ## Test matrix input %! expected(:,:,1) = [-1,1;0,0;0,0;0,0]; %! expected(:,:,2) = [0,0;1.5,1.5;0,0;-15,-15]; %! expected(:,:,3) = [1,-1;0,0;0,0;0,0]; %! assert (result, expected); %!test %! result = legendre (3, [-1,0,1;1,0,-1]'); %! expected(:,:,1) = [-1,0,1;0,1.5,0;0,0,0;0,-15,0]; %! expected(:,:,2) = [1,0,-1;0,1.5,0;0,0,0;0,-15,0]; %! assert (result, expected); %% Check correct invocation %!error legendre () %!error legendre (1) %!error legendre (1,2,3,4) %!error legendre ([1, 2], [-1, 0, 1]) %!error legendre (-1, [-1, 0, 1]) %!error legendre (1.1, [-1, 0, 1]) %!error legendre (1, [-1+i, 0, 1]) %!error legendre (1, [-2, 0, 1]) %!error legendre (1, [-1, 0, 2]) %!error legendre (1, [-1, 0, 1], "badnorm")