Mercurial > hg > octave-lyh
view src/DLD-FUNCTIONS/rcond.cc @ 7797:f42c6f8d6d8e
Extend rcond function to single precision types
author | David Bateman <dbateman@free.fr> |
---|---|
date | Wed, 14 May 2008 23:28:41 +0200 |
parents | 45f5faba05a2 |
children | 6f2d95255911 |
line wrap: on
line source
/* Copyright (C) 2008 David Bateman This file is part of Octave. Octave is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. Octave is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Octave; see the file COPYING. If not, see <http://www.gnu.org/licenses/>. */ #ifdef HAVE_CONFIG_H #include <config.h> #endif #include "defun-dld.h" #include "error.h" #include "gripes.h" #include "oct-obj.h" #include "utils.h" DEFUN_DLD (rcond, args, , "-*- texinfo -*-\n\ @deftypefn {Loadable Function} {@var{c} =} rcond (@var{a})\n\ Compute the 1-norm estimate of the reciprocal condition as returned\n\ by LAPACK. If the matrix is well-conditioned then @var{c} will be near\n\ 1 and if the matrix is poorly conditioned it will be close to zero.\n\ \n\ The matrix @var{a} must not be sparse. If the matrix is sparse then\n\ @code{condest (@var{a})} or @code{rcond (full (@var{a}))} should be used\n\ instead.\n\ @seealso{inv, mldivide}\n\ @end deftypefn") { octave_value retval; int nargin = args.length (); if (nargin != 1) print_usage (); else if (args(0).is_sparse_type ()) error ("rcond: for sparse matrices use 'rcond (full (a))' or 'condest (a)' instead"); else if (args(0).is_single_type ()) { if (args(0).is_complex_type ()) { FloatComplexMatrix m = args(0).float_complex_matrix_value (); MatrixType mattyp; retval = m.rcond (mattyp); args(0).matrix_type (mattyp); } else { FloatMatrix m = args(0).float_matrix_value (); MatrixType mattyp; retval = m.rcond (mattyp); args(0).matrix_type (mattyp); } } else if (args(0).is_complex_type ()) { ComplexMatrix m = args(0).complex_matrix_value (); MatrixType mattyp; retval = m.rcond (mattyp); args(0).matrix_type (mattyp); } else { Matrix m = args(0).matrix_value (); MatrixType mattyp; retval = m.rcond (mattyp); args(0).matrix_type (mattyp); } return retval; }