Mercurial > hg > octave-lyh
view src/DLD-FUNCTIONS/det.cc @ 7505:f5005d9510f4
Remove dispatched sparse functions and treat in the generic versions of the functions
author | David Bateman <dbateman@free.fr> |
---|---|
date | Wed, 20 Feb 2008 15:52:11 -0500 |
parents | a1dbe9d80eee |
children | eb7bdde776f2 |
line wrap: on
line source
/* Copyright (C) 1996, 1997, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007 John W. Eaton This file is part of Octave. Octave is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. Octave is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Octave; see the file COPYING. If not, see <http://www.gnu.org/licenses/>. */ #ifdef HAVE_CONFIG_H #include <config.h> #endif #include "CmplxDET.h" #include "dbleDET.h" #include "defun-dld.h" #include "error.h" #include "gripes.h" #include "oct-obj.h" #include "utils.h" DEFUN_DLD (det, args, , "-*- texinfo -*-\n\ @deftypefn {Loadable Function} {[@var{d}, @var{rcond}] = } det (@var{a})\n\ Compute the determinant of @var{a} using @sc{Lapack} for full and UMFPACK\n\ for sparse matrices. Return an estimate of the reciprocal condition number\n\ if requested.\n\ @end deftypefn") { octave_value_list retval; int nargin = args.length (); if (nargin != 1) { print_usage (); return retval; } octave_value arg = args(0); octave_idx_type nr = arg.rows (); octave_idx_type nc = arg.columns (); if (nr == 0 && nc == 0) { retval(0) = 1.0; return retval; } int arg_is_empty = empty_arg ("det", nr, nc); if (arg_is_empty < 0) return retval; if (arg_is_empty > 0) return octave_value (Matrix (1, 1, 1.0)); if (nr != nc) { gripe_square_matrix_required ("det"); return retval; } if (arg.is_real_type ()) { octave_idx_type info; double rcond = 0.0; // Always compute rcond, so we can detect numerically // singular matrices. if (arg.is_sparse_type ()) { SparseMatrix m = arg.sparse_matrix_value (); if (! error_state) { DET det = m.determinant (info, rcond); retval(1) = rcond; volatile double xrcond = rcond; xrcond += 1.0; retval(0) = ((info == -1 || xrcond == 1.0) ? 0.0 : det.value ()); } } else { Matrix m = arg.matrix_value (); if (! error_state) { DET det = m.determinant (info, rcond); retval(1) = rcond; volatile double xrcond = rcond; xrcond += 1.0; retval(0) = ((info == -1 || xrcond == 1.0) ? 0.0 : det.value ()); } } } else if (arg.is_complex_type ()) { octave_idx_type info; double rcond = 0.0; // Always compute rcond, so we can detect numerically // singular matrices. if (arg.is_sparse_type ()) { SparseComplexMatrix m = arg.sparse_complex_matrix_value (); if (! error_state) { ComplexDET det = m.determinant (info, rcond); retval(1) = rcond; volatile double xrcond = rcond; xrcond += 1.0; retval(0) = ((info == -1 || xrcond == 1.0) ? Complex (0.0) : det.value ()); } } else { ComplexMatrix m = arg.complex_matrix_value (); if (! error_state) { ComplexDET det = m.determinant (info, rcond); retval(1) = rcond; volatile double xrcond = rcond; xrcond += 1.0; retval(0) = ((info == -1 || xrcond == 1.0) ? Complex (0.0) : det.value ()); } } } else gripe_wrong_type_arg ("det", arg); return retval; } /* ;;; Local Variables: *** ;;; mode: C++ *** ;;; End: *** */