Mercurial > hg > octave-lyh
view scripts/control/base/are.m @ 3455:f758be6e1730
[project @ 2000-01-18 19:57:12 by hodelas]
frequency response and sysprune functions allow input of signal names or
signal indices.
author | hodelas |
---|---|
date | Tue, 18 Jan 2000 19:57:13 +0000 |
parents | 99ab64f4a09d |
children | 22bd65326ec1 |
line wrap: on
line source
## Copyright (C) 1993, 1994, 1995 Auburn University. All rights reserved. ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by the ## Free Software Foundation; either version 2, or (at your option) any ## later version. ## ## Octave is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License ## for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, write to the Free ## Software Foundation, 59 Temple Place, Suite 330, Boston, MA 02111 USA. ## -*- texinfo -*- ## @deftypefn {Function File} {} are (@var{a}, @var{b}, @var{c}, @var{opt}) ## Solve the algebraic Riccati equation ## @iftex ## @tex ## $$ ## A^TX + XA - XBX + C = 0 ## $$ ## @end tex ## @end iftex ## @ifinfo ## @example ## a' * x + x * a - x * b * x + c = 0 ## @end example ## @end ifinfo ## ## @strong{Inputs} ## @noindent ## for identically dimensioned square matrices ## @table @var ## @item a ## @var{n}x@var{n} matrix. ## @item b ## @var{n}x@var{n} matrix or @var{n}x@var{m} matrix; in the latter case ## @var{b} is replaced by @math{b:=b*b'}. ## @item c ## @var{n}x@var{n} matrix or @var{p}x@var{m} matrix; in the latter case ## @var{c} is replaced by @math{c:=c'*c}. ## @item opt ## (optional argument; default = @code{"B"}): ## String option passed to @code{balance} prior to ordered Schur decomposition. ## @end table ## ## @strong{Outputs} ## @var{x}: solution of the ARE. ## ## @strong{Method} ## Laub's Schur method (IEEE Transactions on ## Automatic Control, 1979) is applied to the appropriate Hamiltonian ## matrix. ## ## @end deftypefn ## @seealso{balance and dare} ## Author: A. S. Hodel <a.s.hodel@eng.auburn.edu> ## Created: August 1993 function x = are (a, b, c, opt) if (nargin == 3 || nargin == 4) if (nargin == 4) if (! (strcmp (opt, "N") || strcmp (opt, "P") ... || strcmp (opt, "S") || strcmp (opt, "B") ... || strcmp (opt, "n") || strcmp (opt, "p") ... || strcmp (opt, "s") || strcmp (opt, "b"))) warning ("are: opt has an invalid value; setting to B"); opt = "B"; endif else opt = "B"; endif if ((n = is_square(a)) == 0) error ("are: a is not square"); endif if (is_controllable(a,b) == 0) warning ("are: a, b are not controllable"); endif if ((m = is_square (b)) == 0) b = b * b'; m = rows (b); endif if (is_observable (a, c) == 0) warning ("are: a,c are not observable"); endif if ((p = is_square (c)) == 0) c = c' * c; p = rows (c); endif if (n != m || n != p) error ("are: a, b, c not conformably dimensioned."); endif ## Should check for controllability/observability here ## use Boley-Golub (Syst. Contr. Letters, 1984) method, not the ## ## n-1 ## rank ([ B A*B ... A^ *B]) method [d, h] = balance ([a, -b; -c, -a'], opt); [u, s] = schur (h, "A"); u = d * u; n1 = n + 1; n2 = 2 * n; x = u (n1:n2, 1:n) / u (1:n, 1:n); else usage ("x = are (a, b, c)") endif endfunction