Mercurial > hg > octave-lyh
view scripts/statistics/distributions/nbincdf.m @ 11523:fd0a3ac60b0e
update copyright notices
author | John W. Eaton <jwe@octave.org> |
---|---|
date | Fri, 14 Jan 2011 05:47:45 -0500 |
parents | 1740012184f9 |
children | c792872f8942 |
line wrap: on
line source
## Copyright (C) 1995-2011 Kurt Hornik ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {} nbincdf (@var{x}, @var{n}, @var{p}) ## For each element of @var{x}, compute the CDF at x of the Pascal ## (negative binomial) distribution with parameters @var{n} and @var{p}. ## ## The number of failures in a Bernoulli experiment with success ## probability @var{p} before the @var{n}-th success follows this ## distribution. ## @end deftypefn ## Author: KH <Kurt.Hornik@wu-wien.ac.at> ## Description: CDF of the Pascal (negative binomial) distribution function cdf = nbincdf (x, n, p) if (nargin != 3) print_usage (); endif if (!isscalar(n) || !isscalar(p)) [retval, x, n, p] = common_size (x, n, p); if (retval > 0) error ("nbincdf: X, N and P must be of common size or scalar"); endif endif cdf = zeros (size (x)); k = find (isnan (x) | (n < 1) | (n == Inf) | (n != round (n)) | (p < 0) | (p > 1)); if (any (k)) cdf(k) = NaN; endif k = find ((x == Inf) & (n > 0) & (n < Inf) & (n == round (n)) & (p >= 0) & (p <= 1)); if (any (k)) cdf(k) = 1; endif k = find ((x >= 0) & (x < Inf) & (x == round (x)) & (n > 0) & (n < Inf) & (n == round (n)) & (p > 0) & (p <= 1)); if (any (k)) ## Does anyone know a better way to do the summation? m = zeros (size (k)); x = floor (x(k)); y = cdf(k); if (isscalar (n) && isscalar (p)) while (1) l = find (m <= x); if (any (l)) y(l) = y(l) + nbinpdf (m(l), n, p); m(l) = m(l) + 1; else break; endif endwhile else n = n(k); p = p(k); while (1) l = find (m <= x); if (any (l)) y(l) = y(l) + nbinpdf (m(l), n(l), p(l)); m(l) = m(l) + 1; else break; endif endwhile endif cdf(k) = y; endif endfunction