Mercurial > hg > octave-lyh
view scripts/plot/meshgrid.m @ 17506:ff5ff67946cb
meshgrid.m: Close @code{} macro in docstring.
* scripts/plot/meshgrid.m: Close @code{} macro in docstring.
author | Rik <rik@octave.org> |
---|---|
date | Wed, 25 Sep 2013 13:44:24 -0700 |
parents | cff399332a7f |
children | db92cd6117a9 |
line wrap: on
line source
## Copyright (C) 1996-2012 John W. Eaton ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {[@var{xx}, @var{yy}] =} meshgrid (@var{x}, @var{y}) ## @deftypefnx {Function File} {[@var{xx}, @var{yy}, @var{zz}] =} meshgrid (@var{x}, @var{y}, @var{z}) ## @deftypefnx {Function File} {[@var{xx}, @var{yy}] =} meshgrid (@var{x}) ## @deftypefnx {Function File} {[@var{xx}, @var{yy}, @var{zz}] =} meshgrid (@var{x}) ## Given vectors of @var{x} and @var{y} coordinates, return matrices @var{xx} ## and @var{yy} corresponding to a full 2-D grid. ## ## The rows of @var{xx} are copies of @var{x}, and the columns of @var{yy} are ## copies of @var{y}. If @var{y} is omitted, then it is assumed to be the same ## as @var{x}. ## ## If the optional @var{z} input is given, or @var{zz} is requested, then the ## output will be a full 3-D grid. ## ## @code{meshgrid} is most frequently used to produce input for a 2-D or 3-D ## function that will be plotted. The following example creates a surface ## plot of the ``sombrero'' function. ## ## @example ## f = @@(x,y) sin (sqrt (x.^2 + y.^2)) ./ sqrt (x.^2 + y.^2); ## range = linspace (-8, 8, 41); ## [@var{X}, @var{Y}] = meshgrid (range, range); ## Z = f (X, Y); ## surf (X, Y, Z); ## @end example ## ## Programming Note: @code{meshgrid} is restricted to 2-D or 3-D grid ## generation. The @code{ndgrid} function will generate 1-D through N-D ## grids. However, the functions are not completely equivalent. If @var{x} ## is a vector of length M and @var{y} is a vector of length N, then ## @code{meshgrid} will produce an output grid which is NxM. @code{ndgrid} ## will produce an output which is MxN for the same input. ## @seealso{ndgrid, mesh, contour, surf} ## @end deftypefn ## Author: jwe function [xx, yy, zz] = meshgrid (x, y, z) if (nargin == 0 || nargin > 3) print_usage (); endif if (nargin < 2) y = x; endif ## Use repmat to ensure that result values have the same type as the inputs if (nargout < 3) if (! (isvector (x) && isvector (y))) error ("meshgrid: X and Y must be vectors"); endif xx = repmat (x(:).', length (y), 1); yy = repmat (y(:), 1, length (x)); else if (nargin < 3) z = y; endif if (! (isvector (x) && isvector (y) && isvector (z))) error ("meshgrid: X, Y, and Z must be vectors"); endif lenx = length (x); leny = length (y); lenz = length (z); xx = repmat (repmat (x(:).', leny, 1), [1, 1, lenz]); yy = repmat (repmat (y(:), 1, lenx), [1, 1, lenz]); zz = reshape (repmat (z(:).', lenx*leny, 1)(:), leny, lenx, lenz); endif endfunction %!test %! x = 1:2; %! y = 1:3; %! z = 1:4; %! [XX, YY, ZZ] = meshgrid (x, y, z); %! assert (size_equal (XX, YY, ZZ)); %! assert (ndims (XX), 3); %! assert (size (XX), [3, 2, 4]); %! assert (XX(1) * YY(1) * ZZ(1), x(1) * y(1) * z(1)); %! assert (XX(end) * YY(end) * ZZ(end), x(end) * y(end) * z(end)); %!test %! x = 1:2; %! y = 1:3; %! [XX, YY] = meshgrid (x, y); %! assert (size_equal (XX, YY)); %! assert (ndims (XX), 2); %! assert (size (XX), [3, 2]); %! assert (XX(1) * YY(1), x(1) * y(1)); %! assert (XX(end) * YY(end), x(end) * y(end)); %!test %! x = 1:3; %! [XX1, YY1] = meshgrid (x, x); %! [XX2, YY2] = meshgrid (x); %! assert (size_equal (XX1, XX2, YY1, YY2)); %! assert (ndims (XX1), 2); %! assert (size (XX1), [3, 3]); %! assert (XX1, XX2); %! assert (YY1, YY2); %% Test input validation %!error meshgrid () %!error meshgrid (1,2,3,4) %!error <X and Y must be vectors> meshgrid (ones (2,2), 1:3) %!error <X and Y must be vectors> meshgrid (1:3, ones (2,2)) %!error <X, Y, and Z must be vectors> [X,Y,Z] = meshgrid (1:3, 1:3, ones (2,2))