Mercurial > hg > octave-lyh
view liboctave/fNDArray.cc @ 14193:72aebe619641 stable rc-3-6-0-0
3.6.0-rc0 release candidate
* configure.ac (AC_INIT): Version is now 3.6.0-rc0.
(OCTAVE_RELEASE_DATE): Now 2012-01-10.
(OCTAVE_API_VERSION_NUMBER): Now 47.
author | John W. Eaton <jwe@octave.org> |
---|---|
date | Tue, 10 Jan 2012 16:43:41 -0500 |
parents | 72c96de7a403 |
children | e8e86ae3abbc |
line wrap: on
line source
// N-D Array manipulations. /* Copyright (C) 1996-2012 John W. Eaton Copyright (C) 2009 VZLU Prague, a.s. This file is part of Octave. Octave is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. Octave is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Octave; see the file COPYING. If not, see <http://www.gnu.org/licenses/>. */ #ifdef HAVE_CONFIG_H #include <config.h> #endif #include <cfloat> #include <vector> #include "Array-util.h" #include "f77-fcn.h" #include "fNDArray.h" #include "functor.h" #include "lo-error.h" #include "lo-ieee.h" #include "lo-mappers.h" #include "mx-base.h" #include "mx-op-defs.h" #include "oct-fftw.h" #include "oct-locbuf.h" #include "bsxfun-defs.cc" FloatNDArray::FloatNDArray (const charNDArray& a) : MArray<float> (a.dims ()) { octave_idx_type n = a.numel (); for (octave_idx_type i = 0; i < n; i++) xelem (i) = static_cast<unsigned char> (a(i)); } #if defined (HAVE_FFTW) FloatComplexNDArray FloatNDArray::fourier (int dim) const { dim_vector dv = dims (); if (dim > dv.length () || dim < 0) return FloatComplexNDArray (); octave_idx_type stride = 1; octave_idx_type n = dv(dim); for (int i = 0; i < dim; i++) stride *= dv(i); octave_idx_type howmany = numel () / dv (dim); howmany = (stride == 1 ? howmany : (howmany > stride ? stride : howmany)); octave_idx_type nloop = (stride == 1 ? 1 : numel () / dv (dim) / stride); octave_idx_type dist = (stride == 1 ? n : 1); const float *in (fortran_vec ()); FloatComplexNDArray retval (dv); FloatComplex *out (retval.fortran_vec ()); // Need to be careful here about the distance between fft's for (octave_idx_type k = 0; k < nloop; k++) octave_fftw::fft (in + k * stride * n, out + k * stride * n, n, howmany, stride, dist); return retval; } FloatComplexNDArray FloatNDArray::ifourier (int dim) const { dim_vector dv = dims (); if (dim > dv.length () || dim < 0) return FloatComplexNDArray (); octave_idx_type stride = 1; octave_idx_type n = dv(dim); for (int i = 0; i < dim; i++) stride *= dv(i); octave_idx_type howmany = numel () / dv (dim); howmany = (stride == 1 ? howmany : (howmany > stride ? stride : howmany)); octave_idx_type nloop = (stride == 1 ? 1 : numel () / dv (dim) / stride); octave_idx_type dist = (stride == 1 ? n : 1); FloatComplexNDArray retval (*this); FloatComplex *out (retval.fortran_vec ()); // Need to be careful here about the distance between fft's for (octave_idx_type k = 0; k < nloop; k++) octave_fftw::ifft (out + k * stride * n, out + k * stride * n, n, howmany, stride, dist); return retval; } FloatComplexNDArray FloatNDArray::fourier2d (void) const { dim_vector dv = dims(); if (dv.length () < 2) return FloatComplexNDArray (); dim_vector dv2(dv(0), dv(1)); const float *in = fortran_vec (); FloatComplexNDArray retval (dv); FloatComplex *out = retval.fortran_vec (); octave_idx_type howmany = numel() / dv(0) / dv(1); octave_idx_type dist = dv(0) * dv(1); for (octave_idx_type i=0; i < howmany; i++) octave_fftw::fftNd (in + i*dist, out + i*dist, 2, dv2); return retval; } FloatComplexNDArray FloatNDArray::ifourier2d (void) const { dim_vector dv = dims(); if (dv.length () < 2) return FloatComplexNDArray (); dim_vector dv2(dv(0), dv(1)); FloatComplexNDArray retval (*this); FloatComplex *out = retval.fortran_vec (); octave_idx_type howmany = numel() / dv(0) / dv(1); octave_idx_type dist = dv(0) * dv(1); for (octave_idx_type i=0; i < howmany; i++) octave_fftw::ifftNd (out + i*dist, out + i*dist, 2, dv2); return retval; } FloatComplexNDArray FloatNDArray::fourierNd (void) const { dim_vector dv = dims (); int rank = dv.length (); const float *in (fortran_vec ()); FloatComplexNDArray retval (dv); FloatComplex *out (retval.fortran_vec ()); octave_fftw::fftNd (in, out, rank, dv); return retval; } FloatComplexNDArray FloatNDArray::ifourierNd (void) const { dim_vector dv = dims (); int rank = dv.length (); FloatComplexNDArray tmp (*this); FloatComplex *in (tmp.fortran_vec ()); FloatComplexNDArray retval (dv); FloatComplex *out (retval.fortran_vec ()); octave_fftw::ifftNd (in, out, rank, dv); return retval; } #else extern "C" { // Note that the original complex fft routines were not written for // float complex arguments. They have been modified by adding an // implicit float precision (a-h,o-z) statement at the beginning of // each subroutine. F77_RET_T F77_FUNC (cffti, CFFTI) (const octave_idx_type&, FloatComplex*); F77_RET_T F77_FUNC (cfftf, CFFTF) (const octave_idx_type&, FloatComplex*, FloatComplex*); F77_RET_T F77_FUNC (cfftb, CFFTB) (const octave_idx_type&, FloatComplex*, FloatComplex*); } FloatComplexNDArray FloatNDArray::fourier (int dim) const { dim_vector dv = dims (); if (dim > dv.length () || dim < 0) return FloatComplexNDArray (); FloatComplexNDArray retval (dv); octave_idx_type npts = dv(dim); octave_idx_type nn = 4*npts+15; Array<FloatComplex> wsave (nn); FloatComplex *pwsave = wsave.fortran_vec (); OCTAVE_LOCAL_BUFFER (FloatComplex, tmp, npts); octave_idx_type stride = 1; for (int i = 0; i < dim; i++) stride *= dv(i); octave_idx_type howmany = numel () / npts; howmany = (stride == 1 ? howmany : (howmany > stride ? stride : howmany)); octave_idx_type nloop = (stride == 1 ? 1 : numel () / npts / stride); octave_idx_type dist = (stride == 1 ? npts : 1); F77_FUNC (cffti, CFFTI) (npts, pwsave); for (octave_idx_type k = 0; k < nloop; k++) { for (octave_idx_type j = 0; j < howmany; j++) { octave_quit (); for (octave_idx_type i = 0; i < npts; i++) tmp[i] = elem((i + k*npts)*stride + j*dist); F77_FUNC (cfftf, CFFTF) (npts, tmp, pwsave); for (octave_idx_type i = 0; i < npts; i++) retval ((i + k*npts)*stride + j*dist) = tmp[i]; } } return retval; } FloatComplexNDArray FloatNDArray::ifourier (int dim) const { dim_vector dv = dims (); if (dim > dv.length () || dim < 0) return FloatComplexNDArray (); FloatComplexNDArray retval (dv); octave_idx_type npts = dv(dim); octave_idx_type nn = 4*npts+15; Array<FloatComplex> wsave (nn); FloatComplex *pwsave = wsave.fortran_vec (); OCTAVE_LOCAL_BUFFER (FloatComplex, tmp, npts); octave_idx_type stride = 1; for (int i = 0; i < dim; i++) stride *= dv(i); octave_idx_type howmany = numel () / npts; howmany = (stride == 1 ? howmany : (howmany > stride ? stride : howmany)); octave_idx_type nloop = (stride == 1 ? 1 : numel () / npts / stride); octave_idx_type dist = (stride == 1 ? npts : 1); F77_FUNC (cffti, CFFTI) (npts, pwsave); for (octave_idx_type k = 0; k < nloop; k++) { for (octave_idx_type j = 0; j < howmany; j++) { octave_quit (); for (octave_idx_type i = 0; i < npts; i++) tmp[i] = elem((i + k*npts)*stride + j*dist); F77_FUNC (cfftb, CFFTB) (npts, tmp, pwsave); for (octave_idx_type i = 0; i < npts; i++) retval ((i + k*npts)*stride + j*dist) = tmp[i] / static_cast<float> (npts); } } return retval; } FloatComplexNDArray FloatNDArray::fourier2d (void) const { dim_vector dv = dims(); dim_vector dv2 (dv(0), dv(1)); int rank = 2; FloatComplexNDArray retval (*this); octave_idx_type stride = 1; for (int i = 0; i < rank; i++) { octave_idx_type npts = dv2(i); octave_idx_type nn = 4*npts+15; Array<FloatComplex> wsave (nn); FloatComplex *pwsave = wsave.fortran_vec (); Array<FloatComplex> row (npts); FloatComplex *prow = row.fortran_vec (); octave_idx_type howmany = numel () / npts; howmany = (stride == 1 ? howmany : (howmany > stride ? stride : howmany)); octave_idx_type nloop = (stride == 1 ? 1 : numel () / npts / stride); octave_idx_type dist = (stride == 1 ? npts : 1); F77_FUNC (cffti, CFFTI) (npts, pwsave); for (octave_idx_type k = 0; k < nloop; k++) { for (octave_idx_type j = 0; j < howmany; j++) { octave_quit (); for (octave_idx_type l = 0; l < npts; l++) prow[l] = retval ((l + k*npts)*stride + j*dist); F77_FUNC (cfftf, CFFTF) (npts, prow, pwsave); for (octave_idx_type l = 0; l < npts; l++) retval ((l + k*npts)*stride + j*dist) = prow[l]; } } stride *= dv2(i); } return retval; } FloatComplexNDArray FloatNDArray::ifourier2d (void) const { dim_vector dv = dims(); dim_vector dv2 (dv(0), dv(1)); int rank = 2; FloatComplexNDArray retval (*this); octave_idx_type stride = 1; for (int i = 0; i < rank; i++) { octave_idx_type npts = dv2(i); octave_idx_type nn = 4*npts+15; Array<FloatComplex> wsave (nn); FloatComplex *pwsave = wsave.fortran_vec (); Array<FloatComplex> row (npts); FloatComplex *prow = row.fortran_vec (); octave_idx_type howmany = numel () / npts; howmany = (stride == 1 ? howmany : (howmany > stride ? stride : howmany)); octave_idx_type nloop = (stride == 1 ? 1 : numel () / npts / stride); octave_idx_type dist = (stride == 1 ? npts : 1); F77_FUNC (cffti, CFFTI) (npts, pwsave); for (octave_idx_type k = 0; k < nloop; k++) { for (octave_idx_type j = 0; j < howmany; j++) { octave_quit (); for (octave_idx_type l = 0; l < npts; l++) prow[l] = retval ((l + k*npts)*stride + j*dist); F77_FUNC (cfftb, CFFTB) (npts, prow, pwsave); for (octave_idx_type l = 0; l < npts; l++) retval ((l + k*npts)*stride + j*dist) = prow[l] / static_cast<float> (npts); } } stride *= dv2(i); } return retval; } FloatComplexNDArray FloatNDArray::fourierNd (void) const { dim_vector dv = dims (); int rank = dv.length (); FloatComplexNDArray retval (*this); octave_idx_type stride = 1; for (int i = 0; i < rank; i++) { octave_idx_type npts = dv(i); octave_idx_type nn = 4*npts+15; Array<FloatComplex> wsave (nn); FloatComplex *pwsave = wsave.fortran_vec (); Array<FloatComplex> row (npts); FloatComplex *prow = row.fortran_vec (); octave_idx_type howmany = numel () / npts; howmany = (stride == 1 ? howmany : (howmany > stride ? stride : howmany)); octave_idx_type nloop = (stride == 1 ? 1 : numel () / npts / stride); octave_idx_type dist = (stride == 1 ? npts : 1); F77_FUNC (cffti, CFFTI) (npts, pwsave); for (octave_idx_type k = 0; k < nloop; k++) { for (octave_idx_type j = 0; j < howmany; j++) { octave_quit (); for (octave_idx_type l = 0; l < npts; l++) prow[l] = retval ((l + k*npts)*stride + j*dist); F77_FUNC (cfftf, CFFTF) (npts, prow, pwsave); for (octave_idx_type l = 0; l < npts; l++) retval ((l + k*npts)*stride + j*dist) = prow[l]; } } stride *= dv(i); } return retval; } FloatComplexNDArray FloatNDArray::ifourierNd (void) const { dim_vector dv = dims (); int rank = dv.length (); FloatComplexNDArray retval (*this); octave_idx_type stride = 1; for (int i = 0; i < rank; i++) { octave_idx_type npts = dv(i); octave_idx_type nn = 4*npts+15; Array<FloatComplex> wsave (nn); FloatComplex *pwsave = wsave.fortran_vec (); Array<FloatComplex> row (npts); FloatComplex *prow = row.fortran_vec (); octave_idx_type howmany = numel () / npts; howmany = (stride == 1 ? howmany : (howmany > stride ? stride : howmany)); octave_idx_type nloop = (stride == 1 ? 1 : numel () / npts / stride); octave_idx_type dist = (stride == 1 ? npts : 1); F77_FUNC (cffti, CFFTI) (npts, pwsave); for (octave_idx_type k = 0; k < nloop; k++) { for (octave_idx_type j = 0; j < howmany; j++) { octave_quit (); for (octave_idx_type l = 0; l < npts; l++) prow[l] = retval ((l + k*npts)*stride + j*dist); F77_FUNC (cfftb, CFFTB) (npts, prow, pwsave); for (octave_idx_type l = 0; l < npts; l++) retval ((l + k*npts)*stride + j*dist) = prow[l] / static_cast<float> (npts); } } stride *= dv(i); } return retval; } #endif // unary operations boolNDArray FloatNDArray::operator ! (void) const { if (any_element_is_nan ()) gripe_nan_to_logical_conversion (); return do_mx_unary_op<bool, float> (*this, mx_inline_not); } bool FloatNDArray::any_element_is_negative (bool neg_zero) const { return (neg_zero ? test_all (xnegative_sign) : do_mx_check<float> (*this, mx_inline_any_negative)); } bool FloatNDArray::any_element_is_positive (bool neg_zero) const { return (neg_zero ? test_all (xpositive_sign) : do_mx_check<float> (*this, mx_inline_any_positive)); } bool FloatNDArray::any_element_is_nan (void) const { return do_mx_check<float> (*this, mx_inline_any_nan); } bool FloatNDArray::any_element_is_inf_or_nan (void) const { return ! do_mx_check<float> (*this, mx_inline_all_finite); } bool FloatNDArray::any_element_not_one_or_zero (void) const { return ! test_all (xis_one_or_zero); } bool FloatNDArray::all_elements_are_zero (void) const { return test_all (xis_zero); } bool FloatNDArray::all_elements_are_int_or_inf_or_nan (void) const { return test_all (xis_int_or_inf_or_nan); } // Return nonzero if any element of M is not an integer. Also extract // the largest and smallest values and return them in MAX_VAL and MIN_VAL. bool FloatNDArray::all_integers (float& max_val, float& min_val) const { octave_idx_type nel = nelem (); if (nel > 0) { max_val = elem (0); min_val = elem (0); } else return false; for (octave_idx_type i = 0; i < nel; i++) { float val = elem (i); if (val > max_val) max_val = val; if (val < min_val) min_val = val; if (! xisinteger (val)) return false; } return true; } bool FloatNDArray::all_integers (void) const { return test_all (xisinteger); } bool FloatNDArray::too_large_for_float (void) const { return false; } // FIXME -- this is not quite the right thing. boolNDArray FloatNDArray::all (int dim) const { return do_mx_red_op<bool, float> (*this, dim, mx_inline_all); } boolNDArray FloatNDArray::any (int dim) const { return do_mx_red_op<bool, float> (*this, dim, mx_inline_any); } FloatNDArray FloatNDArray::cumprod (int dim) const { return do_mx_cum_op<float, float> (*this, dim, mx_inline_cumprod); } FloatNDArray FloatNDArray::cumsum (int dim) const { return do_mx_cum_op<float, float> (*this, dim, mx_inline_cumsum); } FloatNDArray FloatNDArray::prod (int dim) const { return do_mx_red_op<float, float> (*this, dim, mx_inline_prod); } FloatNDArray FloatNDArray::sum (int dim) const { return do_mx_red_op<float, float> (*this, dim, mx_inline_sum); } NDArray FloatNDArray::dsum (int dim) const { return do_mx_red_op<double, float> (*this, dim, mx_inline_dsum); } FloatNDArray FloatNDArray::sumsq (int dim) const { return do_mx_red_op<float, float> (*this, dim, mx_inline_sumsq); } FloatNDArray FloatNDArray::max (int dim) const { return do_mx_minmax_op<float> (*this, dim, mx_inline_max); } FloatNDArray FloatNDArray::max (Array<octave_idx_type>& idx_arg, int dim) const { return do_mx_minmax_op<float> (*this, idx_arg, dim, mx_inline_max); } FloatNDArray FloatNDArray::min (int dim) const { return do_mx_minmax_op<float> (*this, dim, mx_inline_min); } FloatNDArray FloatNDArray::min (Array<octave_idx_type>& idx_arg, int dim) const { return do_mx_minmax_op<float> (*this, idx_arg, dim, mx_inline_min); } FloatNDArray FloatNDArray::cummax (int dim) const { return do_mx_cumminmax_op<float> (*this, dim, mx_inline_cummax); } FloatNDArray FloatNDArray::cummax (Array<octave_idx_type>& idx_arg, int dim) const { return do_mx_cumminmax_op<float> (*this, idx_arg, dim, mx_inline_cummax); } FloatNDArray FloatNDArray::cummin (int dim) const { return do_mx_cumminmax_op<float> (*this, dim, mx_inline_cummin); } FloatNDArray FloatNDArray::cummin (Array<octave_idx_type>& idx_arg, int dim) const { return do_mx_cumminmax_op<float> (*this, idx_arg, dim, mx_inline_cummin); } FloatNDArray FloatNDArray::diff (octave_idx_type order, int dim) const { return do_mx_diff_op<float> (*this, dim, order, mx_inline_diff); } FloatNDArray FloatNDArray::concat (const FloatNDArray& rb, const Array<octave_idx_type>& ra_idx) { if (rb.numel () > 0) insert (rb, ra_idx); return *this; } FloatComplexNDArray FloatNDArray::concat (const FloatComplexNDArray& rb, const Array<octave_idx_type>& ra_idx) { FloatComplexNDArray retval (*this); if (rb.numel () > 0) retval.insert (rb, ra_idx); return retval; } charNDArray FloatNDArray::concat (const charNDArray& rb, const Array<octave_idx_type>& ra_idx) { charNDArray retval (dims ()); octave_idx_type nel = numel (); for (octave_idx_type i = 0; i < nel; i++) { float d = elem (i); if (xisnan (d)) { (*current_liboctave_error_handler) ("invalid conversion from NaN to character"); return retval; } else { octave_idx_type ival = NINTbig (d); if (ival < 0 || ival > UCHAR_MAX) // FIXME -- is there something // better we could do? Should we warn the user? ival = 0; retval.elem (i) = static_cast<char>(ival); } } if (rb.numel () == 0) return retval; retval.insert (rb, ra_idx); return retval; } FloatNDArray real (const FloatComplexNDArray& a) { return do_mx_unary_op<float, FloatComplex> (a, mx_inline_real); } FloatNDArray imag (const FloatComplexNDArray& a) { return do_mx_unary_op<float, FloatComplex> (a, mx_inline_imag); } FloatNDArray& FloatNDArray::insert (const FloatNDArray& a, octave_idx_type r, octave_idx_type c) { Array<float>::insert (a, r, c); return *this; } FloatNDArray& FloatNDArray::insert (const FloatNDArray& a, const Array<octave_idx_type>& ra_idx) { Array<float>::insert (a, ra_idx); return *this; } FloatNDArray FloatNDArray::abs (void) const { return do_mx_unary_map<float, float, std::abs> (*this); } boolNDArray FloatNDArray::isnan (void) const { return do_mx_unary_map<bool, float, xisnan> (*this); } boolNDArray FloatNDArray::isinf (void) const { return do_mx_unary_map<bool, float, xisinf> (*this); } boolNDArray FloatNDArray::isfinite (void) const { return do_mx_unary_map<bool, float, xfinite> (*this); } FloatMatrix FloatNDArray::matrix_value (void) const { FloatMatrix retval; if (ndims () == 2) retval = FloatMatrix (Array<float> (*this)); else (*current_liboctave_error_handler) ("invalid conversion of FloatNDArray to FloatMatrix"); return retval; } void FloatNDArray::increment_index (Array<octave_idx_type>& ra_idx, const dim_vector& dimensions, int start_dimension) { ::increment_index (ra_idx, dimensions, start_dimension); } octave_idx_type FloatNDArray::compute_index (Array<octave_idx_type>& ra_idx, const dim_vector& dimensions) { return ::compute_index (ra_idx, dimensions); } FloatNDArray FloatNDArray::diag (octave_idx_type k) const { return MArray<float>::diag (k); } // This contains no information on the array structure !!! std::ostream& operator << (std::ostream& os, const FloatNDArray& a) { octave_idx_type nel = a.nelem (); for (octave_idx_type i = 0; i < nel; i++) { os << " "; octave_write_float (os, a.elem (i)); os << "\n"; } return os; } std::istream& operator >> (std::istream& is, FloatNDArray& a) { octave_idx_type nel = a.nelem (); if (nel > 0) { float tmp; for (octave_idx_type i = 0; i < nel; i++) { tmp = octave_read_value<float> (is); if (is) a.elem (i) = tmp; else goto done; } } done: return is; } MINMAX_FCNS (FloatNDArray, float) NDS_CMP_OPS (FloatNDArray, float) NDS_BOOL_OPS (FloatNDArray, float) SND_CMP_OPS (float, FloatNDArray) SND_BOOL_OPS (float, FloatNDArray) NDND_CMP_OPS (FloatNDArray, FloatNDArray) NDND_BOOL_OPS (FloatNDArray, FloatNDArray) BSXFUN_STDOP_DEFS_MXLOOP (FloatNDArray) BSXFUN_STDREL_DEFS_MXLOOP (FloatNDArray) BSXFUN_OP_DEF_MXLOOP (pow, FloatNDArray, mx_inline_pow) BSXFUN_OP2_DEF_MXLOOP (pow, FloatComplexNDArray, FloatComplexNDArray, FloatNDArray, mx_inline_pow) BSXFUN_OP2_DEF_MXLOOP (pow, FloatComplexNDArray, FloatNDArray, FloatComplexNDArray, mx_inline_pow)