Mercurial > hg > octave-lyh
view scripts/polynomial/polygcd.m @ 14200:64d9f33313cc stable rc-3-6-0-1
3.6.0-rc1 release candidate
* configure.ac (AC_INIT): Version is now 3.6.0-rc1.
(OCTAVE_RELEASE_DATE): Now 2012-01-12.
author | John W. Eaton <jwe@octave.org> |
---|---|
date | Thu, 12 Jan 2012 14:31:50 -0500 |
parents | 72c96de7a403 |
children | 4d917a6a858b |
line wrap: on
line source
## Copyright (C) 2000-2012 Paul Kienzle ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {@var{q} =} polygcd (@var{b}, @var{a}) ## @deftypefnx {Function File} {@var{q} =} polygcd (@var{b}, @var{a}, @var{tol}) ## ## Find the greatest common divisor of two polynomials. This is equivalent ## to the polynomial found by multiplying together all the common roots. ## Together with deconv, you can reduce a ratio of two polynomials. ## The tolerance @var{tol} defaults to @code{sqrt(eps)}. ## ## @strong{Caution:} This is a numerically unstable algorithm and should not be used on large polynomials. ## ## Example code: ## ## @example ## @group ## polygcd (poly(1:8), poly(3:12)) - poly(3:8) ## @result{} [ 0, 0, 0, 0, 0, 0, 0 ] ## deconv (poly(1:8), polygcd (poly(1:8), poly(3:12))) ... ## - poly(1:2) ## @result{} [ 0, 0, 0 ] ## @end group ## @end example ## @seealso{poly, roots, conv, deconv, residue} ## @end deftypefn function x = polygcd (b, a, tol) if (nargin == 2 || nargin == 3) if (nargin == 2) if (isa (a, "single") || isa (b, "single")) tol = sqrt (eps ("single")); else tol = sqrt (eps); endif endif if (length (a) == 1 || length (b) == 1) if (a == 0) x = b; elseif (b == 0) x = a; else x = 1; endif else a /= a(1); while (1) [d, r] = deconv (b, a); nz = find (abs (r) > tol); if (isempty (nz)) x = a; break; else r = r(nz(1):length(r)); endif b = a; a = r / r(1); endwhile endif else print_usage (); endif endfunction %!test %! poly1 = [1 6 11 6]; % (x+1)(x+2)(x+3) %! poly2 = [1 3 2]; % (x+1)(x+2) %! poly3 = polygcd (poly1, poly2); %! assert (poly3, poly2, sqrt (eps)) %!test %! assert (polygcd (poly(1:8), poly(3:12)), poly(3:8), sqrt (eps)) %!test %! assert (deconv (poly(1:8), polygcd (poly(1:8), poly(3:12))), poly(1:2), sqrt (eps)) %!test %! for ii=1:10 %! p = (unique (randn (10, 1)) * 10).'; %! p1 = p(3:end); %! p2 = p(1:end-2); %! assert (polygcd (poly (-p1), poly (-p2)), poly (- intersect (p1, p2)), sqrt (eps)) %! endfor