Mercurial > hg > octave-lyh
view scripts/specfun/primes.m @ 14200:64d9f33313cc stable rc-3-6-0-1
3.6.0-rc1 release candidate
* configure.ac (AC_INIT): Version is now 3.6.0-rc1.
(OCTAVE_RELEASE_DATE): Now 2012-01-12.
author | John W. Eaton <jwe@octave.org> |
---|---|
date | Thu, 12 Jan 2012 14:31:50 -0500 |
parents | 72c96de7a403 |
children | f3d52523cde1 |
line wrap: on
line source
## Copyright (C) 2000-2012 Paul Kienzle ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {} primes (@var{n}) ## ## Return all primes up to @var{n}. ## ## The algorithm used is the Sieve of Eratosthenes. ## ## Note that if you need a specific number of primes you can use the ## fact that the distance from one prime to the next is, on average, ## proportional to the logarithm of the prime. Integrating, one finds ## that there are about @math{k} primes less than ## @tex ## $k \log (5 k)$. ## @end tex ## @ifnottex ## k*log(5*k). ## @end ifnottex ## @seealso{list_primes, isprime} ## @end deftypefn ## Author: Paul Kienzle ## Author: Francesco Potortì ## Author: Dirk Laurie function x = primes (n) if (nargin != 1) print_usage (); endif if (! isscalar (n)) error ("primes: N must be a scalar"); endif if (n > 100000) ## Optimization: 1/6 less memory, and much faster (asymptotically) ## 100000 happens to be the cross-over point for Paul's machine; ## below this the more direct code below is faster. At the limit ## of memory in Paul's machine, this saves .7 seconds out of 7 for ## n = 3e6. Hardly worthwhile, but Dirk reports better numbers. lenm = floor ((n+1)/6); # length of the 6n-1 sieve lenp = floor ((n-1)/6); # length of the 6n+1 sieve sievem = true (1, lenm); # assume every number of form 6n-1 is prime sievep = true (1, lenp); # assume every number of form 6n+1 is prime for i = 1:(sqrt(n)+1)/6 # check up to sqrt(n) if (sievem(i)) # if i is prime, eliminate multiples of i sievem(7*i-1:6*i-1:lenm) = false; sievep(5*i-1:6*i-1:lenp) = false; endif # if i is prime, eliminate multiples of i if (sievep(i)) sievep(7*i+1:6*i+1:lenp) = false; sievem(5*i+1:6*i+1:lenm) = false; endif endfor x = sort([2, 3, 6*find(sievem)-1, 6*find(sievep)+1]); elseif (n > 352) # nothing magical about 352; must be >2 len = floor ((n-1)/2); # length of the sieve sieve = true (1, len); # assume every odd number is prime for i = 1:(sqrt(n)-1)/2 # check up to sqrt(n) if (sieve(i)) # if i is prime, eliminate multiples of i sieve(3*i+1:2*i+1:len) = false; # do it endif endfor x = [2, 1+2*find(sieve)]; # primes remaining after sieve else a = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, ... 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, ... 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, ... 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, ... 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, ... 293, 307, 311, 313, 317, 331, 337, 347, 349]; x = a(a <= n); endif endfunction %!error primes (); %!error primes (1, 2); %!assert (size (primes (350)), [1, 70]); %!assert (size (primes (350)), [1, 70]); %!assert (primes (357)(end), 353);