Mercurial > hg > octave-lyh
view liboctave/MArray.cc @ 14685:4460c4fb20e6 stable rc-3-6-2-2
3.6.2-rc2 release candidate
* configure.ac (AC_INIT): Version is now 3.6.2-rc2.
author | John W. Eaton <jwe@octave.org> |
---|---|
date | Thu, 24 May 2012 15:35:50 -0400 |
parents | 72c96de7a403 |
children |
line wrap: on
line source
/* Copyright (C) 1993-2012 John W. Eaton Copyright (C) 2009 VZLU Prague This file is part of Octave. Octave is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. Octave is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Octave; see the file COPYING. If not, see <http://www.gnu.org/licenses/>. */ #ifdef HAVE_CONFIG_H #include <config.h> #endif #include "MArray.h" #include "Array-util.h" #include "lo-error.h" #include "MArray-defs.h" #include "mx-inlines.cc" template <class T> struct _idxadds_helper { T *array; T val; _idxadds_helper (T *a, T v) : array (a), val (v) { } void operator () (octave_idx_type i) { array[i] += val; } }; template <class T> struct _idxadda_helper { T *array; const T *vals; _idxadda_helper (T *a, const T *v) : array (a), vals (v) { } void operator () (octave_idx_type i) { array[i] += *vals++; } }; template <class T> void MArray<T>::idx_add (const idx_vector& idx, T val) { octave_idx_type n = this->length (); octave_idx_type ext = idx.extent (n); if (ext > n) { this->resize1 (ext); n = ext; } octave_quit (); octave_idx_type len = idx.length (n); idx.loop (len, _idxadds_helper<T> (this->fortran_vec (), val)); } template <class T> void MArray<T>::idx_add (const idx_vector& idx, const MArray<T>& vals) { octave_idx_type n = this->length (); octave_idx_type ext = idx.extent (n); if (ext > n) { this->resize1 (ext); n = ext; } octave_quit (); octave_idx_type len = std::min (idx.length (n), vals.length ()); idx.loop (len, _idxadda_helper<T> (this->fortran_vec (), vals.data ())); } template <class T, T op (typename ref_param<T>::type, typename ref_param<T>::type)> struct _idxbinop_helper { T *array; const T *vals; _idxbinop_helper (T *a, const T *v) : array (a), vals (v) { } void operator () (octave_idx_type i) { array[i] = op (array[i], *vals++); } }; template <class T> void MArray<T>::idx_min (const idx_vector& idx, const MArray<T>& vals) { octave_idx_type n = this->length (); octave_idx_type ext = idx.extent (n); if (ext > n) { this->resize1 (ext); n = ext; } octave_quit (); octave_idx_type len = std::min (idx.length (n), vals.length ()); idx.loop (len, _idxbinop_helper<T, xmin> (this->fortran_vec (), vals.data ())); } template <class T> void MArray<T>::idx_max (const idx_vector& idx, const MArray<T>& vals) { octave_idx_type n = this->length (); octave_idx_type ext = idx.extent (n); if (ext > n) { this->resize1 (ext); n = ext; } octave_quit (); octave_idx_type len = std::min (idx.length (n), vals.length ()); idx.loop (len, _idxbinop_helper<T, xmax> (this->fortran_vec (), vals.data ())); } #include <iostream> template <class T> void MArray<T>::idx_add_nd (const idx_vector& idx, const MArray<T>& vals, int dim) { int nd = std::max (this->ndims (), vals.ndims ()); if (dim < 0) dim = vals.dims ().first_non_singleton (); else if (dim > nd) nd = dim; // Check dimensions. dim_vector ddv = Array<T>::dims ().redim (nd); dim_vector sdv = vals.dims ().redim (nd); octave_idx_type ext = idx.extent (ddv (dim)); if (ext > ddv(dim)) { ddv(dim) = ext; Array<T>::resize (ddv); ext = ddv(dim); } octave_idx_type l,n,u,ns; get_extent_triplet (ddv, dim, l, n, u); ns = sdv(dim); sdv(dim) = ddv(dim) = 0; if (ddv != sdv) (*current_liboctave_error_handler) ("accumdim: dimension mismatch"); T *dst = Array<T>::fortran_vec (); const T *src = vals.data (); octave_idx_type len = idx.length (ns); if (l == 1) { for (octave_idx_type j = 0; j < u; j++) { octave_quit (); idx.loop (len, _idxadda_helper<T> (dst + j*n, src + j*ns)); } } else { for (octave_idx_type j = 0; j < u; j++) { octave_quit (); for (octave_idx_type i = 0; i < len; i++) { octave_idx_type k = idx(i); mx_inline_add2 (l, dst + l*k, src + l*i); } dst += l*n; src += l*ns; } } } // N-dimensional array with math ops. template <class T> void MArray<T>::changesign (void) { if (Array<T>::is_shared ()) *this = - *this; else do_mx_inplace_op<T> (*this, mx_inline_uminus2); } // Element by element MArray by scalar ops. template <class T> MArray<T>& operator += (MArray<T>& a, const T& s) { if (a.is_shared ()) a = a + s; else do_ms_inplace_op<T, T> (a, s, mx_inline_add2); return a; } template <class T> MArray<T>& operator -= (MArray<T>& a, const T& s) { if (a.is_shared ()) a = a - s; else do_ms_inplace_op<T, T> (a, s, mx_inline_sub2); return a; } template <class T> MArray<T>& operator *= (MArray<T>& a, const T& s) { if (a.is_shared ()) a = a * s; else do_ms_inplace_op<T, T> (a, s, mx_inline_mul2); return a; } template <class T> MArray<T>& operator /= (MArray<T>& a, const T& s) { if (a.is_shared ()) a = a / s; else do_ms_inplace_op<T, T> (a, s, mx_inline_div2); return a; } // Element by element MArray by MArray ops. template <class T> MArray<T>& operator += (MArray<T>& a, const MArray<T>& b) { if (a.is_shared ()) a = a + b; else do_mm_inplace_op<T, T> (a, b, mx_inline_add2, mx_inline_add2, "+="); return a; } template <class T> MArray<T>& operator -= (MArray<T>& a, const MArray<T>& b) { if (a.is_shared ()) a = a - b; else do_mm_inplace_op<T, T> (a, b, mx_inline_sub2, mx_inline_sub2, "-="); return a; } template <class T> MArray<T>& product_eq (MArray<T>& a, const MArray<T>& b) { if (a.is_shared ()) return a = product (a, b); else do_mm_inplace_op<T, T> (a, b, mx_inline_mul2, mx_inline_mul2, ".*="); return a; } template <class T> MArray<T>& quotient_eq (MArray<T>& a, const MArray<T>& b) { if (a.is_shared ()) return a = quotient (a, b); else do_mm_inplace_op<T, T> (a, b, mx_inline_div2, mx_inline_div2, "./="); return a; } // Element by element MArray by scalar ops. #define MARRAY_NDS_OP(OP, FN) \ template <class T> \ MArray<T> \ operator OP (const MArray<T>& a, const T& s) \ { \ return do_ms_binary_op<T, T, T> (a, s, FN); \ } MARRAY_NDS_OP (+, mx_inline_add) MARRAY_NDS_OP (-, mx_inline_sub) MARRAY_NDS_OP (*, mx_inline_mul) MARRAY_NDS_OP (/, mx_inline_div) // Element by element scalar by MArray ops. #define MARRAY_SND_OP(OP, FN) \ template <class T> \ MArray<T> \ operator OP (const T& s, const MArray<T>& a) \ { \ return do_sm_binary_op<T, T, T> (s, a, FN); \ } MARRAY_SND_OP (+, mx_inline_add) MARRAY_SND_OP (-, mx_inline_sub) MARRAY_SND_OP (*, mx_inline_mul) MARRAY_SND_OP (/, mx_inline_div) // Element by element MArray by MArray ops. #define MARRAY_NDND_OP(FCN, OP, FN) \ template <class T> \ MArray<T> \ FCN (const MArray<T>& a, const MArray<T>& b) \ { \ return do_mm_binary_op<T, T, T> (a, b, FN, FN, FN, #FCN); \ } MARRAY_NDND_OP (operator +, +, mx_inline_add) MARRAY_NDND_OP (operator -, -, mx_inline_sub) MARRAY_NDND_OP (product, *, mx_inline_mul) MARRAY_NDND_OP (quotient, /, mx_inline_div) template <class T> MArray<T> operator + (const MArray<T>& a) { return a; } template <class T> MArray<T> operator - (const MArray<T>& a) { return do_mx_unary_op<T, T> (a, mx_inline_uminus); }