Mercurial > hg > octave-lyh
changeset 17316:5a6caf617f56
ellipj.cc: Use Octave coding conventions for %!demos and %!tests.
* libinterp/corefcn/ellipj.cc: Use Octave coding conventions for %!demos and
%!tests.
author | Rik <rik@octave.org> |
---|---|
date | Wed, 21 Aug 2013 17:17:16 -0700 |
parents | 4448cc742880 |
children | 5a65b2cc9508 |
files | libinterp/corefcn/ellipj.cc |
diffstat | 1 files changed, 66 insertions(+), 66 deletions(-) [+] |
line wrap: on
line diff
--- a/libinterp/corefcn/ellipj.cc +++ b/libinterp/corefcn/ellipj.cc @@ -425,53 +425,53 @@ %!demo %! N = 150; -%! % m = [1-logspace(0,log(eps),N-1), 1]; ## m near 1 -%! % m = [0, logspace(log(eps),0,N-1)]; ## m near 0 -%! m = linspace(0,1,N); ## m equally spaced -%! u = linspace(-20,20,N); -%! M = ones(length(u),1) * m; -%! U = u' * ones(1, length(m)); -%! [sn, cn, dn] = ellipj(U,M); +%! # m = [1-logspace(0,log(eps),N-1), 1]; # m near 1 +%! # m = [0, logspace(log(eps),0,N-1)]; # m near 0 +%! m = linspace (0,1,N); # m equally spaced +%! u = linspace (-20, 20, N); +%! M = ones (length (u), 1) * m; +%! U = u' * ones (1, length (m)); +%! [sn, cn, dn] = ellipj (U,M); %! -%! %% Plotting -%! c = colormap(hot(64)); +%! ## Plotting +%! c = colormap (hot (64)); %! data = {sn,cn,dn}; %! dname = {"sn","cn","dn"}; %! for i=1:3 -%! subplot(1,3,i); +%! subplot (1,3,i); %! data{i}(data{i} > 1) = 1; %! data{i}(data{i} < -1) = -1; -%! image(m,u,32*data{i}+32); -%! title(dname{i}); -%! end -%! colormap(c); +%! image (m,u,32*data{i}+32); +%! title (dname{i}); +%! endfor +%! colormap (c); %!demo %! N = 200; -%! % m = [1-logspace(0,log(eps),N-1), 1]; ## m near 1 -%! % m = [0, logspace(log(eps),0,N-1)]; ## m near 0 -%! m = linspace(0,1,N); ## m equally spaced -%! u = linspace(0,20,5); -%! M = ones(length(u),1) * m; -%! U = u' * ones(1, length(m)); -%! [sn, cn, dn] = ellipj(U,M); +%! # m = [1-logspace(0,log(eps),N-1), 1]; # m near 1 +%! # m = [0, logspace(log(eps),0,N-1)]; # m near 0 +%! m = linspace (0,1,N); # m equally spaced +%! u = linspace (0,20,5); +%! M = ones (length (u), 1) * m; +%! U = u' * ones (1, length (m)); +%! [sn, cn, dn] = ellipj (U,M); %! -%! %% Plotting +%! ## Plotting %! data = {sn,cn,dn}; %! dname = {"sn","cn","dn"}; %! for i=1:3 -%! subplot(1,3,i); -%! plot(m, data{i}); -%! title(dname{i}); +%! subplot (1,3,i); +%! plot (m, data{i}); +%! title (dname{i}); %! grid on; -%! end +%! endfor */ /* ## tests taken from inst/test_sncndn.m %!test -%! k = (tan(pi/8.))^2; m = k*k; +%! k = (tan(pi/8.))^2; m = k*k; %! SN = [ %! -1. + I * 0. , -0.8392965923 + 0. * I %! -1. + I * 0.2 , -0.8559363407 + 0.108250955 * I @@ -848,9 +848,9 @@ %! ui = y * 0.2; %! ii = 1 + y + x*11; %! [sn, cn, dn] = ellipj (ur + I * ui, m); -%! assert (SN (ii, 2), sn, tol); -%! assert (CN (ii, 2), cn, tol); -%! assert (DN (ii, 2), dn, tol); +%! assert (SN(ii, 2), sn, tol); +%! assert (CN(ii, 2), cn, tol); +%! assert (DN(ii, 2), dn, tol); %! endfor %! endfor @@ -858,58 +858,58 @@ %!test %! u1 = pi/3; m1 = 0; %! res1 = [sin(pi/3), cos(pi/3), 1]; -%! [sn,cn,dn]=ellipj(u1,m1); -%! assert([sn,cn,dn], res1, 10*eps); +%! [sn,cn,dn] = ellipj (u1,m1); +%! assert ([sn,cn,dn], res1, 10*eps); %!test %! u2 = log(2); m2 = 1; %! res2 = [ 3/5, 4/5, 4/5 ]; -%! [sn,cn,dn]=ellipj(u2,m2); -%! assert([sn,cn,dn], res2, 10*eps); +%! [sn,cn,dn] = ellipj (u2,m2); +%! assert ([sn,cn,dn], res2, 10*eps); %!test %! u3 = log(2)*1i; m3 = 0; %! res3 = [3i/4,5/4,1]; -%! [sn,cn,dn]=ellipj(u3,m3); -%! assert([sn,cn,dn], res3, 10*eps); +%! [sn,cn,dn] = ellipj (u3,m3); +%! assert ([sn,cn,dn], res3, 10*eps); %!test -%! u4 = -1; m4 = tan(pi/8)^4; +%! u4 = -1; m4 = tan (pi/8)^4; %! res4 = [-0.8392965923,0.5436738271,0.9895776106]; -%! [sn,cn,dn]=ellipj(u4, m4); -%! assert([sn,cn,dn], res4, 1e-10); +%! [sn,cn,dn] = ellipj (u4, m4); +%! assert ([sn,cn,dn], res4, 1e-10); %!test %! u5 = -0.2 + 0.4i; m5 = tan(pi/8)^4; %! res5 = [ -0.2152524522 + 0.402598347i, ... %! 1.059453907 + 0.08179712295i, ... %! 1.001705496 + 0.00254669712i ]; -%! [sn,cn,dn]=ellipj(u5,m5); -%! assert([sn,cn,dn], res5, 1e-9); +%! [sn,cn,dn] = ellipj (u5,m5); +%! assert ([sn,cn,dn], res5, 1e-9); %!test %! u6 = 0.2 + 0.6i; m6 = tan(pi/8)^4; %! res6 = [ 0.2369100139 + 0.624633635i, ... %! 1.16200643 - 0.1273503824i, ... %! 1.004913944 - 0.004334880912i ]; -%! [sn,cn,dn]=ellipj(u6,m6); -%! assert([sn,cn,dn], res6, 1e-8); +%! [sn,cn,dn] = ellipj (u6,m6); +%! assert ([sn,cn,dn], res6, 1e-8); %!test -%! u7 = 0.8 + 0.8i; m7 = tan(pi/8)^4; +%! u7 = 0.8 + 0.8i; m7 = tan (pi/8)^4; %! res7 = [0.9588386397 + 0.6107824358i, ... %! 0.9245978896 - 0.6334016187i, ... %! 0.9920785856 - 0.01737733806i ]; -%! [sn,cn,dn]=ellipj(u7,m7); -%! assert([sn,cn,dn], res7, 1e-10); +%! [sn,cn,dn] = ellipj (u7,m7); +%! assert ([sn,cn,dn], res7, 1e-10); %!test %! u=[0,pi/6,pi/4,pi/2]; m=0; %! res = [0,1/2,1/sqrt(2),1;1,cos(pi/6),1/sqrt(2),0;1,1,1,1]; -%! [sn,cn,dn]=ellipj(u,m); -%! assert([sn;cn;dn],res, 100*eps); -%! [sn,cn,dn]=ellipj(u',0); -%! assert([sn,cn,dn],res', 100*eps); +%! [sn,cn,dn] = ellipj (u,m); +%! assert ([sn;cn;dn],res, 100*eps); +%! [sn,cn,dn] = ellipj (u',0); +%! assert ([sn,cn,dn],res', 100*eps); ## XXX FIXME XXX ## need to check [real,complex]x[scalar,rowvec,colvec,matrix]x[u,m] @@ -922,24 +922,24 @@ %! u = [ 0.25; 0.25; 0.20; 0.20; 0.672; 0.5]; %! m = [ 0.0; 1.0; 0.19; 0.81; 0.36; 0.9999999999]; %! S = [ sin(0.25); tanh(0.25); -%! 0.19842311013970879516; -%! 0.19762082367187648571; -%! 0.6095196917919021945; -%! 0.4621171572617320908 ]; +%! 0.19842311013970879516; +%! 0.19762082367187648571; +%! 0.6095196917919021945; +%! 0.4621171572617320908 ]; %! C = [ cos(0.25); sech(0.25); -%! 0.9801164570409401062; -%! 0.9802785369736752032; -%! 0.7927709286533560550; -%! 0.8868188839691764094 ]; +%! 0.9801164570409401062; +%! 0.9802785369736752032; +%! 0.7927709286533560550; +%! 0.8868188839691764094 ]; %! D = [ 1.0; sech(0.25); -%! 0.9962526643271134302; -%! 0.9840560289645665155; -%! 0.9307281387786906491; -%! 0.8868188839812167635 ]; -%! [sn,cn,dn] = ellipj(u,m); -%! assert(sn,S,8*eps); -%! assert(cn,C,8*eps); -%! assert(dn,D,8*eps); +%! 0.9962526643271134302; +%! 0.9840560289645665155; +%! 0.9307281387786906491; +%! 0.8868188839812167635 ]; +%! [sn,cn,dn] = ellipj (u,m); +%! assert (sn,S,8*eps); +%! assert (cn,C,8*eps); +%! assert (dn,D,8*eps); %!error ellipj () %!error ellipj (1)