diff scripts/sparse/pcg.m @ 5837:55404f3b0da1

[project @ 2006-06-01 19:05:31 by jwe]
author jwe
date Thu, 01 Jun 2006 19:05:32 +0000
parents
children 376e02b2ce70
line wrap: on
line diff
new file mode 100644
--- /dev/null
+++ b/scripts/sparse/pcg.m
@@ -0,0 +1,482 @@
+## Copyright (C) 2004 Piotr Krzyzanowski <piotr.krzyzanowski@mimuw.edu.pl>
+##
+## This file is part of Octave.
+##
+## Octave is free software; you can redistribute it and/or modify it
+## under the terms of the GNU General Public License as published by
+## the Free Software Foundation; either version 2, or (at your option)
+## any later version.
+##
+## Octave is distributed in the hope that it will be useful, but
+## WITHOUT ANY WARRANTY; without even the implied warranty of
+## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+## General Public License for more details.
+##
+## You should have received a copy of the GNU General Public License
+## along with Octave; see the file COPYING.  If not, write to the Free
+## Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
+## 02110-1301, USA.
+
+## -*- texinfo -*-
+## @deftypefn {Function File} {@var{x} =} pcg (@var{A}, @var{b}, @var{tol}, @var{maxit}, @var{M}, @var{x0}, @dots{})
+## @deftypefnx {Function File} {[@var{x}, @var{flag}, @var{relres}, @var{iter}, @var{resvec}, @var{eigest}] =} pcg (@dots{})
+##
+## Solves the linear system of equations @code{@var{A} * @var{x} =
+## @var{b}} by means of the  Preconditioned Conjugate Gradient iterative
+## method. The input arguments are
+##
+## @itemize
+## @item
+## @var{A} can be either a square (preferably sparse) matrix or a
+## function handle, inline function or string containing the name
+## of a function which computes @code{@var{A} * @var{x}}. In principle
+## @var{A} should be symmetric and positive definite; if @code{pcg}
+## finds @var{A} to not be positive definite, you will get a warning
+## message and the @var{flag} output parameter will be set.
+## 
+## @item
+## @var{b} is the right hand side vector.
+## 
+## @item
+## @var{tol} is the required relative tolerance for the residual error,
+## @code{@var{b} - @var{A} * @var{x}}. The iteration stops if @code{norm
+## (@var{b} - @var{A} * @var{x}) <= @var{tol} * norm (@var{b} - @var{A} *
+## @var{x0})}. If @var{tol} is empty or is omitted, the function sets
+## @code{@var{tol} = 1e-6} by default.
+## 
+## @item
+## @var{maxit} is the maximum allowable number of iterations; if
+## @code{[]} is supplied for @code{maxit}, or @code{pcg} has less
+## arguments, a default value equal to 20 is used.
+## 
+## @item
+## @var{M} is the (left) preconditioning matrix, so that the iteration is
+## (theoretically) equivalent to solving by @code{pcg} @code{@var{P} *
+## @var{x} = @var{M} \ @var{b}}, with @code{@var{P} = @var{M} \ @var{A}}.
+## Note that a proper choice of the preconditioner may dramatically
+## improve the overall performance of the method. Instead of matrix
+## @var{M}, the user may pass a function which returns the results of 
+## applying the inverse of @var{M} to a vector (usually this is the
+## preferred way of using the preconditioner). If @code{[]} is supplied
+## for @var{M}, or @var{M} is omitted, no preconditioning is applied.
+## 
+## @item
+## @var{x0} is the initial guess. If @var{x0} is empty or omitted, the 
+## function sets @var{x0} to a zero vector by default.
+## @end itemize
+## 
+## The arguments which follow @var{x0} are treated as parameters, and
+## passed in a proper way to any of the functions (@var{A} or @var{M})
+## which are passed to @code{pcg}. See the examples below for further
+## details. The output arguments are
+##
+## @itemize
+## @item
+## @var{x} is the computed approximation to the solution of
+## @code{@var{A} * @var{x} = @var{b}}.
+## 
+## @item
+## @var{flag} reports on the convergence. @code{@var{flag} = 0} means
+## the solution converged and the tolerance criterion given by @var{tol}
+## is satisfied. @code{@var{flag} = 1} means that the @var{maxit} limit
+## for the iteration count was reached. @code{@var{flag} = 3} reports that
+## the (preconditioned) matrix was found not positive definite.
+## 
+## @item
+## @var{relres} is the ratio of the final residual to its initial value,
+## measured in the Euclidean norm.
+## 
+## @item
+## @var{iter} is the actual number of iterations performed.
+##
+## @item 
+## @var{resvec} describes the convergence history of the method.
+## @code{@var{resvec} (i,1)} is the Euclidean norm of the residual, and
+## @code{@var{resvec} (i,2)} is the preconditioned residual norm,
+## after the (@var{i}-1)-th iteration, @code{@var{i} =
+## 1,2,...@var{iter}+1}. The preconditioned residual norm is defined as
+## @code{norm (@var{r}) ^ 2 = @var{r}' * (@var{M} \ @var{r})} where
+## @code{@var{r} = @var{b} - @var{A} * @var{x}}, see also the
+## description of @var{M}. If @var{eigest} is not required, only
+## @code{@var{resvec} (:,1)} is returned.
+## 
+## @item
+## @var{eigest} returns the estimate for the smallest @code{@var{eigest}
+## (1)} and largest @code{@var{eigest} (2)} eigenvalues of the
+## preconditioned matrix @code{@var{P} = @var{M} \ @var{A}}. In 
+## particular, if no preconditioning is used, the extimates for the
+## extreme eigenvalues of @var{A} are returned. @code{@var{eigest} (1)}
+## is an overestimate and @code{@var{eigest} (2)} is an underestimate, 
+## so that @code{@var{eigest} (2) / @var{eigest} (1)} is a lower bound
+## for @code{cond (@var{P}, 2)}, which nevertheless in the limit should
+## theoretically be equal to the actual value of the condition number. 
+## The method which computes @var{eigest} works only for symmetric positive
+## definite @var{A} and @var{M}, and the user is responsible for
+## verifying this assumption. 
+## @end itemize
+## 
+## Let us consider a trivial problem with a diagonal matrix (we exploit the
+## sparsity of A) 
+## 
+## @example
+## @group
+## 	N = 10; 
+## 	A = diag([1:N]); A = sparse(A);  
+## 	b = rand(N,1);
+## @end group
+## @end example
+## 
+## @sc{Example 1:} Simplest use of @code{pcg}
+## 
+## @example
+##   x = pcg(A,b)
+## @end example
+## 
+## @sc{Example 2:} @code{pcg} with a function which computes
+## @code{@var{A} * @var{x}}
+## 
+## @example
+## @group
+##   function y = applyA(x) 
+##     y = [1:N]'.*x; 
+##   endfunction
+##
+##   x = pcg('applyA',b)
+## @end group
+## @end example
+## 
+## @sc{Example 3:} Preconditioned iteration, with full diagnostics. The
+## preconditioner (quite strange, because even the original matrix
+## @var{A} is trivial) is defined as a function
+## 
+## @example
+## @group
+##   function y = applyM(x)		
+##     K = floor(length(x)-2); 
+##     y = x; 
+##     y(1:K) = x(1:K)./[1:K]';	
+##   endfunction
+## 
+##   [x, flag, relres, iter, resvec, eigest] = pcg(A,b,[],[],'applyM')
+##   semilogy([1:iter+1], resvec);
+## @end group
+## @end example
+## 
+## @sc{Example 4:} Finally, a preconditioner which depends on a
+## parameter @var{k}.
+## 
+## @example
+## @group
+##   function y = applyM(x, varargin)
+##   K = varargin@{1@}; 
+##   y = x; y(1:K) = x(1:K)./[1:K]';	 
+##   endfuntion
+## 
+##   [x, flag, relres, iter, resvec, eigest] = ...
+##        pcg(A,b,[],[],'applyM',[],3)
+## @end group
+## @end example
+## 
+## @sc{References}
+## 
+## 	[1] C.T.Kelley, 'Iterative methods for linear and nonlinear equations',
+## 	SIAM, 1995 (the base PCG algorithm) 
+## 	
+## 	[2] Y.Saad, 'Iterative methods for sparse linear systems', PWS 1996
+## 	(condition number estimate from PCG) Revised version of this book is
+## 	available online at http://www-users.cs.umn.edu/~saad/books.html
+## 
+##
+## @seealso{sparse, pcr}
+## @end deftypefn
+
+## REVISION HISTORY
+##
+## 2004-05-21, Piotr Krzyzanowski:
+##	Added 4 demos and 4 tests
+##
+## 2004-05-18, Piotr Krzyzanowski:
+##	Warnings use warning() function now
+##
+## 2004-04-29, Piotr Krzyzanowski:
+##	Added more warning messages when FLAG is not required
+##
+## 2004-04-28, Piotr Krzyzanowski:
+## 	When eigest is required, resvec returns both the Euclidean and the
+##	preconditioned residual norm convergence history
+##
+## 2004-04-20, Piotr Krzyzanowski: 
+## 	Corrected eigenvalue estimator. Changed the tridiagonal matrix
+##	eigenvalue solver to regular eig
+## 
+
+function [x, flag, relres, iter, resvec, eigest] = ...
+		pcg( A, b, tol, maxit, M, x0, varargin )
+
+  if ((nargin < 6) || isempty(x0))
+    x = zeros(size(b));
+  else
+    x = x0;
+  endif
+
+  if (nargin < 5)
+    M = [];
+  endif
+
+  if ((nargin < 4) || isempty(maxit))
+    maxit = min(size(b,1),20);
+  endif
+
+  maxit = maxit + 2;
+
+  if ((nargin < 3) || isempty(tol))
+    tol = 1e-6;
+  endif
+
+  preconditioned_residual_out = false;
+  if (nargout > 5)
+    T = zeros(maxit,maxit);
+    preconditioned_residual_out = true;
+  endif
+
+  matrix_positive_definite = true;	# assume A is positive definite
+
+  p = zeros(size(b)); 
+  oldtau = 1; 
+  if (isnumeric(A))			# is A a matrix?
+    r = b - A*x; 
+  else					# then A should be a function!
+    r = b - feval(A,x,varargin{:});
+  endif
+
+  resvec(1,1) = norm(r); 
+  alpha = 1;
+  iter = 2;
+
+  while ((resvec(iter-1,1) > tol*resvec(1,1)) && (iter < maxit))
+    if (isnumeric(M))		# is M a matrix?
+      if isempty(M)		# if M is empty, use no precond
+	z = r;
+      else			# otherwise, apply the precond
+	z = M \ r;
+      endif
+    else			# then M should be a function!
+      z = feval(M,r,varargin{:});
+    endif
+    tau = z'*r; 
+    resvec(iter-1,2) = sqrt(tau);
+    beta = tau/oldtau;
+    oldtau = tau;
+    p = z + beta*p;
+    if (isnumeric(A))		# is A a matrix?
+      w = A*p;
+    else			# then A should be a function!
+      w = feval(A,p,varargin{:});
+    endif
+    oldalpha = alpha; 		# needed only for eigest
+    alpha = tau/(p'*w);
+    if (alpha <= 0.0) # negative matrix?
+      matrix_positive_definite = false;
+    endif
+    x = x + alpha*p;
+    r = r - alpha*w;
+    if ((nargout > 5) && (iter > 2))
+      T(iter-1:iter, iter-1:iter) = T(iter-1:iter, iter-1:iter) + ...
+	  [1 sqrt(beta); sqrt(beta) beta]./oldalpha;
+      ## EVS = eig(T(2:iter-1,2:iter-1));
+      ## fprintf(stderr,"PCG condest: %g (iteration: %d)\n", max(EVS)/min(EVS),iter);
+    endif
+    resvec(iter,1) = norm(r);
+    iter = iter + 1;
+  endwhile
+
+  if (nargout > 5)
+    if (matrix_positive_definite )
+      if (iter > 3)
+	T = T(2:iter-2,2:iter-2);
+	l = eig(T);
+	eigest = [min(l) max(l)];
+	## fprintf(stderr, "PCG condest: %g\n",eigest(2)/eigest(1));
+      else
+	eigest = [NaN NaN];
+	warning("PCG: eigenvalue estimate failed: iteration converged too fast.");
+      endif
+    else
+      eigest = [NaN NaN];
+    endif
+
+    ## apply the preconditioner once more and finish with the precond
+    ## residual
+    if (isnumeric(M))		# is M a matrix?
+      if isempty(M)		# if M is empty, use no precond
+	z = r;
+      else			# otherwise, apply the precond
+	z = M\r;
+      endif
+    else			# then M should be a function!
+      z = feval(M,r,varargin{:});
+    endif
+    resvec(iter-1,2) = sqrt(r'*z);
+  else
+    resvec = resvec(:,1);	
+  endif
+
+  flag = 0;
+  relres = resvec(iter-1,1)./resvec(1,1);
+  iter = iter - 2;
+  if (iter >= (maxit-2))
+    flag = 1;
+    if (nargout < 2)
+      warning("PCG: maximum number of iterations (%d) reached\n", iter);
+      warning("The initial residual norm was reduced %g times.\n", 1.0/relres);
+    endif
+  else
+    if (nargout < 2)
+      fprintf(stderr, "PCG: converged in %d iterations. ", iter);
+      fprintf(stderr, "The initial residual norm was reduced %g times.\n",...
+	      1.0/relres);
+    endif
+  endif
+
+  if (!matrix_positive_definite)
+    flag = 3;
+    if (nargout < 2)
+      warning("PCG: matrix not positive definite?\n");
+    endif
+  endif
+endfunction
+
+%!demo
+%!
+%!	# Simplest usage of pcg (see also 'help pcg')
+%!
+%!	N = 10; 
+%!	A = diag([1:N]); b = rand(N,1); y = A\b; #y is the true solution
+%!  	x = pcg(A,b);
+%!	printf('The solution relative error is %g\n', norm(x-y)/norm(y));
+%!
+%!	# You shouldn't be afraid if pcg issues some warning messages in this
+%!	# example: watch out in the second example, why it takes N iterations 
+%!	# of pcg to converge to (a very accurate, by the way) solution
+%!demo
+%!
+%!	# Full output from pcg, except for the eigenvalue estimates
+%!	# We use this output to plot the convergence history  
+%!
+%!	N = 10; 
+%!	A = diag([1:N]); b = rand(N,1); X = A\b; #X is the true solution
+%!  	[x, flag, relres, iter, resvec] = pcg(A,b);
+%!	printf('The solution relative error is %g\n', norm(x-X)/norm(X));
+%!	title('Convergence history'); xlabel('Iteration'); ylabel('log(||b-Ax||/||b||)');
+%!	semilogy([0:iter],resvec/resvec(1),'o-g;relative residual;');
+%!demo
+%!
+%!	# Full output from pcg, including the eigenvalue estimates
+%!	# Hilbert matrix is extremely ill conditioned, so pcg WILL have problems
+%!
+%!	N = 10; 
+%!	A = hilb(N); b = rand(N,1); X = A\b; #X is the true solution
+%!  	[x, flag, relres, iter, resvec, eigest] = pcg(A,b,[],200);
+%!	printf('The solution relative error is %g\n', norm(x-X)/norm(X));
+%!	printf('Condition number estimate is %g\n', eigest(2)/eigest(1));
+%!	printf('Actual condition number is   %g\n', cond(A));
+%!	title('Convergence history'); xlabel('Iteration'); ylabel('log(||b-Ax||)');
+%!	semilogy([0:iter],resvec,['o-g;absolute residual;';'+-r;absolute preconditioned residual;']);
+%!demo
+%!
+%!	# Full output from pcg, including the eigenvalue estimates
+%!	# We use the 1-D Laplacian matrix for A, and cond(A) = O(N^2)
+%!	# and that's the reasone we need some preconditioner; here we take
+%!	# a very simple and not powerful Jacobi preconditioner, 
+%!	# which is the diagonal of A
+%!
+%!	N = 100; 
+%!	A = zeros(N,N);
+%!	for i=1:N-1 # form 1-D Laplacian matrix
+%!		A(i:i+1,i:i+1) = [2 -1; -1 2];
+%!	endfor
+%!	b = rand(N,1); X = A\b; #X is the true solution
+%!	maxit = 80;
+%!	printf('System condition number is %g\n',cond(A));
+%!	# No preconditioner: the convergence is very slow!
+%!
+%!  	[x, flag, relres, iter, resvec, eigest] = pcg(A,b,[],maxit);
+%!	printf('System condition number estimate is %g\n',eigest(2)/eigest(1));
+%!	title('Convergence history'); xlabel('Iteration'); ylabel('log(||b-Ax||)');
+%!	semilogy([0:iter],resvec(:,1),'o-g;NO preconditioning: absolute residual;');
+%!
+%!	pause(1);
+%!	# Test Jacobi preconditioner: it will not help much!!!
+%!
+%!	M = diag(diag(A)); # Jacobi preconditioner
+%!  	[x, flag, relres, iter, resvec, eigest] = pcg(A,b,[],maxit,M);
+%!	printf('JACOBI preconditioned system condition number estimate is %g\n',eigest(2)/eigest(1));
+%!	hold on;
+%!	semilogy([0:iter],resvec(:,1),'o-r;JACOBI preconditioner: absolute residual;');
+%!
+%!	pause(1);
+%!	# Test nonoverlapping block Jacobi preconditioner: it will help much!
+%!
+%!	M = zeros(N,N);k=4
+%!	for i=1:k:N # form 1-D Laplacian matrix
+%!		M(i:i+k-1,i:i+k-1) = A(i:i+k-1,i:i+k-1);
+%!	endfor
+%!  	[x, flag, relres, iter, resvec, eigest] = pcg(A,b,[],maxit,M);
+%!	printf('BLOCK JACOBI preconditioned system condition number estimate is %g\n',eigest(2)/eigest(1));
+%!	semilogy([0:iter],resvec(:,1),'o-b;BLOCK JACOBI preconditioner: absolute residual;');
+%!	hold off;
+%!test
+%!
+%!	#solve small diagonal system
+%!
+%!	N = 10; 
+%!	A = diag([1:N]); b = rand(N,1); X = A\b; #X is the true solution
+%!  	[x, flag] = pcg(A,b,[],N+1);
+%!	assert(norm(x-X)/norm(X),0,1e-10);
+%!	assert(flag,0);
+%!
+%!test
+%!
+%!	#solve small indefinite diagonal system
+%!	#despite A is indefinite, the iteration continues and converges
+%!	#indefiniteness of A is detected
+%!
+%!	N = 10; 
+%!	A = diag([1:N].*(-ones(1,N).^2)); b = rand(N,1); X = A\b; #X is the true solution
+%!  	[x, flag] = pcg(A,b,[],N+1);
+%!	assert(norm(x-X)/norm(X),0,1e-10);
+%!	assert(flag,3);
+%!
+%!test
+%!
+%!	#solve tridiagonal system, do not converge in default 20 iterations
+%!
+%!	N = 100; 
+%!	A = zeros(N,N);
+%!	for i=1:N-1 # form 1-D Laplacian matrix
+%!		A(i:i+1,i:i+1) = [2 -1; -1 2];
+%!	endfor
+%!	b = ones(N,1); X = A\b; #X is the true solution
+%!  	[x, flag, relres, iter, resvec, eigest] = pcg(A,b,1e-12);
+%!	assert(flag);
+%!	assert(relres>1.0);
+%!	assert(iter,20); #should perform max allowable default number of iterations
+%!
+%!test
+%!
+%!	#solve tridiagonal system with 'prefect' preconditioner
+%!	#converges in one iteration, so the eigest does not work
+%!	#and issues a warning
+%!
+%!	N = 100; 
+%!	A = zeros(N,N);
+%!	for i=1:N-1 # form 1-D Laplacian matrix
+%!		A(i:i+1,i:i+1) = [2 -1; -1 2];
+%!	endfor
+%!	b = ones(N,1); X = A\b; #X is the true solution
+%!  	[x, flag, relres, iter, resvec, eigest] = pcg(A,b,[],[],A,b);
+%!	assert(norm(x-X)/norm(X),0,1e-6);
+%!	assert(flag,0);
+%!	assert(iter,1); #should converge in one iteration
+%!	assert(isnan(eigest),isnan([NaN NaN]));
+%!