Mercurial > hg > octave-max
diff scripts/sparse/pcg.m @ 5837:55404f3b0da1
[project @ 2006-06-01 19:05:31 by jwe]
author | jwe |
---|---|
date | Thu, 01 Jun 2006 19:05:32 +0000 |
parents | |
children | 376e02b2ce70 |
line wrap: on
line diff
new file mode 100644 --- /dev/null +++ b/scripts/sparse/pcg.m @@ -0,0 +1,482 @@ +## Copyright (C) 2004 Piotr Krzyzanowski <piotr.krzyzanowski@mimuw.edu.pl> +## +## This file is part of Octave. +## +## Octave is free software; you can redistribute it and/or modify it +## under the terms of the GNU General Public License as published by +## the Free Software Foundation; either version 2, or (at your option) +## any later version. +## +## Octave is distributed in the hope that it will be useful, but +## WITHOUT ANY WARRANTY; without even the implied warranty of +## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU +## General Public License for more details. +## +## You should have received a copy of the GNU General Public License +## along with Octave; see the file COPYING. If not, write to the Free +## Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA +## 02110-1301, USA. + +## -*- texinfo -*- +## @deftypefn {Function File} {@var{x} =} pcg (@var{A}, @var{b}, @var{tol}, @var{maxit}, @var{M}, @var{x0}, @dots{}) +## @deftypefnx {Function File} {[@var{x}, @var{flag}, @var{relres}, @var{iter}, @var{resvec}, @var{eigest}] =} pcg (@dots{}) +## +## Solves the linear system of equations @code{@var{A} * @var{x} = +## @var{b}} by means of the Preconditioned Conjugate Gradient iterative +## method. The input arguments are +## +## @itemize +## @item +## @var{A} can be either a square (preferably sparse) matrix or a +## function handle, inline function or string containing the name +## of a function which computes @code{@var{A} * @var{x}}. In principle +## @var{A} should be symmetric and positive definite; if @code{pcg} +## finds @var{A} to not be positive definite, you will get a warning +## message and the @var{flag} output parameter will be set. +## +## @item +## @var{b} is the right hand side vector. +## +## @item +## @var{tol} is the required relative tolerance for the residual error, +## @code{@var{b} - @var{A} * @var{x}}. The iteration stops if @code{norm +## (@var{b} - @var{A} * @var{x}) <= @var{tol} * norm (@var{b} - @var{A} * +## @var{x0})}. If @var{tol} is empty or is omitted, the function sets +## @code{@var{tol} = 1e-6} by default. +## +## @item +## @var{maxit} is the maximum allowable number of iterations; if +## @code{[]} is supplied for @code{maxit}, or @code{pcg} has less +## arguments, a default value equal to 20 is used. +## +## @item +## @var{M} is the (left) preconditioning matrix, so that the iteration is +## (theoretically) equivalent to solving by @code{pcg} @code{@var{P} * +## @var{x} = @var{M} \ @var{b}}, with @code{@var{P} = @var{M} \ @var{A}}. +## Note that a proper choice of the preconditioner may dramatically +## improve the overall performance of the method. Instead of matrix +## @var{M}, the user may pass a function which returns the results of +## applying the inverse of @var{M} to a vector (usually this is the +## preferred way of using the preconditioner). If @code{[]} is supplied +## for @var{M}, or @var{M} is omitted, no preconditioning is applied. +## +## @item +## @var{x0} is the initial guess. If @var{x0} is empty or omitted, the +## function sets @var{x0} to a zero vector by default. +## @end itemize +## +## The arguments which follow @var{x0} are treated as parameters, and +## passed in a proper way to any of the functions (@var{A} or @var{M}) +## which are passed to @code{pcg}. See the examples below for further +## details. The output arguments are +## +## @itemize +## @item +## @var{x} is the computed approximation to the solution of +## @code{@var{A} * @var{x} = @var{b}}. +## +## @item +## @var{flag} reports on the convergence. @code{@var{flag} = 0} means +## the solution converged and the tolerance criterion given by @var{tol} +## is satisfied. @code{@var{flag} = 1} means that the @var{maxit} limit +## for the iteration count was reached. @code{@var{flag} = 3} reports that +## the (preconditioned) matrix was found not positive definite. +## +## @item +## @var{relres} is the ratio of the final residual to its initial value, +## measured in the Euclidean norm. +## +## @item +## @var{iter} is the actual number of iterations performed. +## +## @item +## @var{resvec} describes the convergence history of the method. +## @code{@var{resvec} (i,1)} is the Euclidean norm of the residual, and +## @code{@var{resvec} (i,2)} is the preconditioned residual norm, +## after the (@var{i}-1)-th iteration, @code{@var{i} = +## 1,2,...@var{iter}+1}. The preconditioned residual norm is defined as +## @code{norm (@var{r}) ^ 2 = @var{r}' * (@var{M} \ @var{r})} where +## @code{@var{r} = @var{b} - @var{A} * @var{x}}, see also the +## description of @var{M}. If @var{eigest} is not required, only +## @code{@var{resvec} (:,1)} is returned. +## +## @item +## @var{eigest} returns the estimate for the smallest @code{@var{eigest} +## (1)} and largest @code{@var{eigest} (2)} eigenvalues of the +## preconditioned matrix @code{@var{P} = @var{M} \ @var{A}}. In +## particular, if no preconditioning is used, the extimates for the +## extreme eigenvalues of @var{A} are returned. @code{@var{eigest} (1)} +## is an overestimate and @code{@var{eigest} (2)} is an underestimate, +## so that @code{@var{eigest} (2) / @var{eigest} (1)} is a lower bound +## for @code{cond (@var{P}, 2)}, which nevertheless in the limit should +## theoretically be equal to the actual value of the condition number. +## The method which computes @var{eigest} works only for symmetric positive +## definite @var{A} and @var{M}, and the user is responsible for +## verifying this assumption. +## @end itemize +## +## Let us consider a trivial problem with a diagonal matrix (we exploit the +## sparsity of A) +## +## @example +## @group +## N = 10; +## A = diag([1:N]); A = sparse(A); +## b = rand(N,1); +## @end group +## @end example +## +## @sc{Example 1:} Simplest use of @code{pcg} +## +## @example +## x = pcg(A,b) +## @end example +## +## @sc{Example 2:} @code{pcg} with a function which computes +## @code{@var{A} * @var{x}} +## +## @example +## @group +## function y = applyA(x) +## y = [1:N]'.*x; +## endfunction +## +## x = pcg('applyA',b) +## @end group +## @end example +## +## @sc{Example 3:} Preconditioned iteration, with full diagnostics. The +## preconditioner (quite strange, because even the original matrix +## @var{A} is trivial) is defined as a function +## +## @example +## @group +## function y = applyM(x) +## K = floor(length(x)-2); +## y = x; +## y(1:K) = x(1:K)./[1:K]'; +## endfunction +## +## [x, flag, relres, iter, resvec, eigest] = pcg(A,b,[],[],'applyM') +## semilogy([1:iter+1], resvec); +## @end group +## @end example +## +## @sc{Example 4:} Finally, a preconditioner which depends on a +## parameter @var{k}. +## +## @example +## @group +## function y = applyM(x, varargin) +## K = varargin@{1@}; +## y = x; y(1:K) = x(1:K)./[1:K]'; +## endfuntion +## +## [x, flag, relres, iter, resvec, eigest] = ... +## pcg(A,b,[],[],'applyM',[],3) +## @end group +## @end example +## +## @sc{References} +## +## [1] C.T.Kelley, 'Iterative methods for linear and nonlinear equations', +## SIAM, 1995 (the base PCG algorithm) +## +## [2] Y.Saad, 'Iterative methods for sparse linear systems', PWS 1996 +## (condition number estimate from PCG) Revised version of this book is +## available online at http://www-users.cs.umn.edu/~saad/books.html +## +## +## @seealso{sparse, pcr} +## @end deftypefn + +## REVISION HISTORY +## +## 2004-05-21, Piotr Krzyzanowski: +## Added 4 demos and 4 tests +## +## 2004-05-18, Piotr Krzyzanowski: +## Warnings use warning() function now +## +## 2004-04-29, Piotr Krzyzanowski: +## Added more warning messages when FLAG is not required +## +## 2004-04-28, Piotr Krzyzanowski: +## When eigest is required, resvec returns both the Euclidean and the +## preconditioned residual norm convergence history +## +## 2004-04-20, Piotr Krzyzanowski: +## Corrected eigenvalue estimator. Changed the tridiagonal matrix +## eigenvalue solver to regular eig +## + +function [x, flag, relres, iter, resvec, eigest] = ... + pcg( A, b, tol, maxit, M, x0, varargin ) + + if ((nargin < 6) || isempty(x0)) + x = zeros(size(b)); + else + x = x0; + endif + + if (nargin < 5) + M = []; + endif + + if ((nargin < 4) || isempty(maxit)) + maxit = min(size(b,1),20); + endif + + maxit = maxit + 2; + + if ((nargin < 3) || isempty(tol)) + tol = 1e-6; + endif + + preconditioned_residual_out = false; + if (nargout > 5) + T = zeros(maxit,maxit); + preconditioned_residual_out = true; + endif + + matrix_positive_definite = true; # assume A is positive definite + + p = zeros(size(b)); + oldtau = 1; + if (isnumeric(A)) # is A a matrix? + r = b - A*x; + else # then A should be a function! + r = b - feval(A,x,varargin{:}); + endif + + resvec(1,1) = norm(r); + alpha = 1; + iter = 2; + + while ((resvec(iter-1,1) > tol*resvec(1,1)) && (iter < maxit)) + if (isnumeric(M)) # is M a matrix? + if isempty(M) # if M is empty, use no precond + z = r; + else # otherwise, apply the precond + z = M \ r; + endif + else # then M should be a function! + z = feval(M,r,varargin{:}); + endif + tau = z'*r; + resvec(iter-1,2) = sqrt(tau); + beta = tau/oldtau; + oldtau = tau; + p = z + beta*p; + if (isnumeric(A)) # is A a matrix? + w = A*p; + else # then A should be a function! + w = feval(A,p,varargin{:}); + endif + oldalpha = alpha; # needed only for eigest + alpha = tau/(p'*w); + if (alpha <= 0.0) # negative matrix? + matrix_positive_definite = false; + endif + x = x + alpha*p; + r = r - alpha*w; + if ((nargout > 5) && (iter > 2)) + T(iter-1:iter, iter-1:iter) = T(iter-1:iter, iter-1:iter) + ... + [1 sqrt(beta); sqrt(beta) beta]./oldalpha; + ## EVS = eig(T(2:iter-1,2:iter-1)); + ## fprintf(stderr,"PCG condest: %g (iteration: %d)\n", max(EVS)/min(EVS),iter); + endif + resvec(iter,1) = norm(r); + iter = iter + 1; + endwhile + + if (nargout > 5) + if (matrix_positive_definite ) + if (iter > 3) + T = T(2:iter-2,2:iter-2); + l = eig(T); + eigest = [min(l) max(l)]; + ## fprintf(stderr, "PCG condest: %g\n",eigest(2)/eigest(1)); + else + eigest = [NaN NaN]; + warning("PCG: eigenvalue estimate failed: iteration converged too fast."); + endif + else + eigest = [NaN NaN]; + endif + + ## apply the preconditioner once more and finish with the precond + ## residual + if (isnumeric(M)) # is M a matrix? + if isempty(M) # if M is empty, use no precond + z = r; + else # otherwise, apply the precond + z = M\r; + endif + else # then M should be a function! + z = feval(M,r,varargin{:}); + endif + resvec(iter-1,2) = sqrt(r'*z); + else + resvec = resvec(:,1); + endif + + flag = 0; + relres = resvec(iter-1,1)./resvec(1,1); + iter = iter - 2; + if (iter >= (maxit-2)) + flag = 1; + if (nargout < 2) + warning("PCG: maximum number of iterations (%d) reached\n", iter); + warning("The initial residual norm was reduced %g times.\n", 1.0/relres); + endif + else + if (nargout < 2) + fprintf(stderr, "PCG: converged in %d iterations. ", iter); + fprintf(stderr, "The initial residual norm was reduced %g times.\n",... + 1.0/relres); + endif + endif + + if (!matrix_positive_definite) + flag = 3; + if (nargout < 2) + warning("PCG: matrix not positive definite?\n"); + endif + endif +endfunction + +%!demo +%! +%! # Simplest usage of pcg (see also 'help pcg') +%! +%! N = 10; +%! A = diag([1:N]); b = rand(N,1); y = A\b; #y is the true solution +%! x = pcg(A,b); +%! printf('The solution relative error is %g\n', norm(x-y)/norm(y)); +%! +%! # You shouldn't be afraid if pcg issues some warning messages in this +%! # example: watch out in the second example, why it takes N iterations +%! # of pcg to converge to (a very accurate, by the way) solution +%!demo +%! +%! # Full output from pcg, except for the eigenvalue estimates +%! # We use this output to plot the convergence history +%! +%! N = 10; +%! A = diag([1:N]); b = rand(N,1); X = A\b; #X is the true solution +%! [x, flag, relres, iter, resvec] = pcg(A,b); +%! printf('The solution relative error is %g\n', norm(x-X)/norm(X)); +%! title('Convergence history'); xlabel('Iteration'); ylabel('log(||b-Ax||/||b||)'); +%! semilogy([0:iter],resvec/resvec(1),'o-g;relative residual;'); +%!demo +%! +%! # Full output from pcg, including the eigenvalue estimates +%! # Hilbert matrix is extremely ill conditioned, so pcg WILL have problems +%! +%! N = 10; +%! A = hilb(N); b = rand(N,1); X = A\b; #X is the true solution +%! [x, flag, relres, iter, resvec, eigest] = pcg(A,b,[],200); +%! printf('The solution relative error is %g\n', norm(x-X)/norm(X)); +%! printf('Condition number estimate is %g\n', eigest(2)/eigest(1)); +%! printf('Actual condition number is %g\n', cond(A)); +%! title('Convergence history'); xlabel('Iteration'); ylabel('log(||b-Ax||)'); +%! semilogy([0:iter],resvec,['o-g;absolute residual;';'+-r;absolute preconditioned residual;']); +%!demo +%! +%! # Full output from pcg, including the eigenvalue estimates +%! # We use the 1-D Laplacian matrix for A, and cond(A) = O(N^2) +%! # and that's the reasone we need some preconditioner; here we take +%! # a very simple and not powerful Jacobi preconditioner, +%! # which is the diagonal of A +%! +%! N = 100; +%! A = zeros(N,N); +%! for i=1:N-1 # form 1-D Laplacian matrix +%! A(i:i+1,i:i+1) = [2 -1; -1 2]; +%! endfor +%! b = rand(N,1); X = A\b; #X is the true solution +%! maxit = 80; +%! printf('System condition number is %g\n',cond(A)); +%! # No preconditioner: the convergence is very slow! +%! +%! [x, flag, relres, iter, resvec, eigest] = pcg(A,b,[],maxit); +%! printf('System condition number estimate is %g\n',eigest(2)/eigest(1)); +%! title('Convergence history'); xlabel('Iteration'); ylabel('log(||b-Ax||)'); +%! semilogy([0:iter],resvec(:,1),'o-g;NO preconditioning: absolute residual;'); +%! +%! pause(1); +%! # Test Jacobi preconditioner: it will not help much!!! +%! +%! M = diag(diag(A)); # Jacobi preconditioner +%! [x, flag, relres, iter, resvec, eigest] = pcg(A,b,[],maxit,M); +%! printf('JACOBI preconditioned system condition number estimate is %g\n',eigest(2)/eigest(1)); +%! hold on; +%! semilogy([0:iter],resvec(:,1),'o-r;JACOBI preconditioner: absolute residual;'); +%! +%! pause(1); +%! # Test nonoverlapping block Jacobi preconditioner: it will help much! +%! +%! M = zeros(N,N);k=4 +%! for i=1:k:N # form 1-D Laplacian matrix +%! M(i:i+k-1,i:i+k-1) = A(i:i+k-1,i:i+k-1); +%! endfor +%! [x, flag, relres, iter, resvec, eigest] = pcg(A,b,[],maxit,M); +%! printf('BLOCK JACOBI preconditioned system condition number estimate is %g\n',eigest(2)/eigest(1)); +%! semilogy([0:iter],resvec(:,1),'o-b;BLOCK JACOBI preconditioner: absolute residual;'); +%! hold off; +%!test +%! +%! #solve small diagonal system +%! +%! N = 10; +%! A = diag([1:N]); b = rand(N,1); X = A\b; #X is the true solution +%! [x, flag] = pcg(A,b,[],N+1); +%! assert(norm(x-X)/norm(X),0,1e-10); +%! assert(flag,0); +%! +%!test +%! +%! #solve small indefinite diagonal system +%! #despite A is indefinite, the iteration continues and converges +%! #indefiniteness of A is detected +%! +%! N = 10; +%! A = diag([1:N].*(-ones(1,N).^2)); b = rand(N,1); X = A\b; #X is the true solution +%! [x, flag] = pcg(A,b,[],N+1); +%! assert(norm(x-X)/norm(X),0,1e-10); +%! assert(flag,3); +%! +%!test +%! +%! #solve tridiagonal system, do not converge in default 20 iterations +%! +%! N = 100; +%! A = zeros(N,N); +%! for i=1:N-1 # form 1-D Laplacian matrix +%! A(i:i+1,i:i+1) = [2 -1; -1 2]; +%! endfor +%! b = ones(N,1); X = A\b; #X is the true solution +%! [x, flag, relres, iter, resvec, eigest] = pcg(A,b,1e-12); +%! assert(flag); +%! assert(relres>1.0); +%! assert(iter,20); #should perform max allowable default number of iterations +%! +%!test +%! +%! #solve tridiagonal system with 'prefect' preconditioner +%! #converges in one iteration, so the eigest does not work +%! #and issues a warning +%! +%! N = 100; +%! A = zeros(N,N); +%! for i=1:N-1 # form 1-D Laplacian matrix +%! A(i:i+1,i:i+1) = [2 -1; -1 2]; +%! endfor +%! b = ones(N,1); X = A\b; #X is the true solution +%! [x, flag, relres, iter, resvec, eigest] = pcg(A,b,[],[],A,b); +%! assert(norm(x-X)/norm(X),0,1e-6); +%! assert(flag,0); +%! assert(iter,1); #should converge in one iteration +%! assert(isnan(eigest),isnan([NaN NaN])); +%!