### view scripts/geometry/delaunayn.m @ 15489:481417a57a2d

improve sign and signbit docs * mappers.cc (Fsign): Note sign (-0) is 0. Add @seealso for signbit. (Fsignbit): Add @seealso for sign.
author John W. Eaton Thu, 04 Oct 2012 10:20:59 -0400 759944521fd6
line wrap: on
line source
```
## Copyright (C) 2007-2012 David Bateman
##
## This file is part of Octave.
##
## Octave is free software; you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or (at
## your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see

## -*- texinfo -*-
## @deftypefn  {Function File} {@var{T} =} delaunayn (@var{pts})
## @deftypefnx {Function File} {@var{T} =} delaunayn (@var{pts}, @var{options})
## Compute the Delaunay triangulation for an N-dimensional set of points.
## The Delaunay triangulation is a tessellation of the convex hull of a set
## of points such that no N-sphere defined by the N-triangles contains
## any other points from the set.
##
## The input matrix @var{pts} of size [n, dim] contains n points in a space of
## dimension dim.  The return matrix @var{T} has size [m, dim+1].  Each row
## of @var{T} contains a set of indices back into the original set of points
## @var{pts} which describes a simplex of dimension dim.  For example, a 2-D
## simplex is a triangle and 3-D simplex is a tetrahedron.
##
## An optional second argument, which must be a string or cell array of strings,
## contains options passed to the underlying qhull command.
## See the documentation for the Qhull library for details
## @url{http://www.qhull.org/html/qh-quick.htm#options}.
## The default options depend on the dimension of the input:
##
## @itemize
## @item 2-D and 3-D: @var{options} = @code{@{"Qt", "Qbb", "Qc", "Qz"@}}
##
## @item 4-D and higher: @var{options} = @code{@{"Qt", "Qbb", "Qc", "Qx"@}}
## @end itemize
##
## If @var{options} is not present or @code{[]} then the default arguments are
## used.  Otherwise, @var{options} replaces the default argument list.
## To append user options to the defaults it is necessary to repeat the
## default arguments in @var{options}.  Use a null string to pass no arguments.
##
## @seealso{delaunay, delaunay3, convhulln, voronoin, trimesh, tetramesh}
## @end deftypefn

function T = delaunayn (pts, varargin)

if (nargin < 1)
print_usage ();
endif

T = __delaunayn__ (pts, varargin{:});

if (isa (pts, "single"))
myeps = eps ("single");
else
myeps = eps;
endif

## Try to remove the zero volume simplices.  The volume of the i-th simplex is
## given by abs(det(pts(T(i,1:end-1),:)-pts(T(i,2:end),:)))/prod(1:n)
## (reference http://en.wikipedia.org/wiki/Simplex).  Any simplex with a
## relative volume less than some arbitrary criteria is rejected.  The
## criteria we use is the volume of the simplex corresponding to an
## orthogonal simplex is equal edge length all equal to the edge length of
## the original simplex.  If the relative volume is 1e3*eps then the simplex
## is rejected.  Note division of the two volumes means that the factor
## prod(1:n) is dropped.
idx = [];
[nt, n] = size (T);
## FIXME: Vectorize this for loop or convert to delaunayn to .oct function
for i = 1:nt
X = pts(T(i,1:end-1),:) - pts(T(i,2:end),:);
if (abs (det (X)) / sqrt (sum (X .^ 2, 2)) < 1e3 * myeps)
idx(end+1) = i;
endif
endfor
T(idx,:) = [];

endfunction

%% FIXME: Need tests for delaunayn

%% FIXME: Need input validation tests

```