Mercurial > hg > octave-max
view libcruft/quadpack/dqk21.f @ 11771:735dfdb92384 release-3-0-x
Treat bool as a scalar in the bit functions
author | David Bateman <dbateman@free.fr> |
---|---|
date | Tue, 06 May 2008 06:20:36 -0400 |
parents | af7ec9d3a5e6 |
children |
line wrap: on
line source
SUBROUTINE DQK21(F,A,B,RESULT,ABSERR,RESABS,RESASC,IERR) C***BEGIN PROLOGUE DQK21 C***DATE WRITTEN 800101 (YYMMDD) C***REVISION DATE 830518 (YYMMDD) C***CATEGORY NO. H2A1A2 C***KEYWORDS 21-POINT GAUSS-KRONROD RULES C***AUTHOR PIESSENS,ROBERT,APPL. MATH. & PROGR. DIV. - K.U.LEUVEN C DE DONCKER,ELISE,APPL. MATH. & PROGR. DIV. - K.U.LEUVEN C***PURPOSE TO COMPUTE I = INTEGRAL OF F OVER (A,B), WITH ERROR C ESTIMATE C J = INTEGRAL OF ABS(F) OVER (A,B) C***DESCRIPTION C C INTEGRATION RULES C STANDARD FORTRAN SUBROUTINE C DOUBLE PRECISION VERSION C C PARAMETERS C ON ENTRY C F - SUBROUTINE F(X,IERR,RESULT) DEFINING THE INTEGRAND C FUNCTION F(X). THE ACTUAL NAME FOR F NEEDS TO BE C DECLARED E X T E R N A L IN THE DRIVER PROGRAM. C C A - DOUBLE PRECISION C LOWER LIMIT OF INTEGRATION C C B - DOUBLE PRECISION C UPPER LIMIT OF INTEGRATION C C ON RETURN C RESULT - DOUBLE PRECISION C APPROXIMATION TO THE INTEGRAL I C RESULT IS COMPUTED BY APPLYING THE 21-POINT C KRONROD RULE (RESK) OBTAINED BY OPTIMAL ADDITION C OF ABSCISSAE TO THE 10-POINT GAUSS RULE (RESG). C C ABSERR - DOUBLE PRECISION C ESTIMATE OF THE MODULUS OF THE ABSOLUTE ERROR, C WHICH SHOULD NOT EXCEED ABS(I-RESULT) C C RESABS - DOUBLE PRECISION C APPROXIMATION TO THE INTEGRAL J C C RESASC - DOUBLE PRECISION C APPROXIMATION TO THE INTEGRAL OF ABS(F-I/(B-A)) C OVER (A,B) C C***REFERENCES (NONE) C***ROUTINES CALLED D1MACH C***END PROLOGUE DQK21 C DOUBLE PRECISION A,ABSC,ABSERR,B,CENTR,DABS,DHLGTH,DMAX1,DMIN1, * D1MACH,EPMACH,FC,FSUM,FVAL1,FVAL2,FV1,FV2,HLGTH,RESABS,RESASC, * RESG,RESK,RESKH,RESULT,UFLOW,WG,WGK,XGK INTEGER J,JTW,JTWM1 EXTERNAL F C DIMENSION FV1(10),FV2(10),WG(5),WGK(11),XGK(11) C C THE ABSCISSAE AND WEIGHTS ARE GIVEN FOR THE INTERVAL (-1,1). C BECAUSE OF SYMMETRY ONLY THE POSITIVE ABSCISSAE AND THEIR C CORRESPONDING WEIGHTS ARE GIVEN. C C XGK - ABSCISSAE OF THE 21-POINT KRONROD RULE C XGK(2), XGK(4), ... ABSCISSAE OF THE 10-POINT C GAUSS RULE C XGK(1), XGK(3), ... ABSCISSAE WHICH ARE OPTIMALLY C ADDED TO THE 10-POINT GAUSS RULE C C WGK - WEIGHTS OF THE 21-POINT KRONROD RULE C C WG - WEIGHTS OF THE 10-POINT GAUSS RULE C C C GAUSS QUADRATURE WEIGHTS AND KRONRON QUADRATURE ABSCISSAE AND WEIGHTS C AS EVALUATED WITH 80 DECIMAL DIGIT ARITHMETIC BY L. W. FULLERTON, C BELL LABS, NOV. 1981. C DATA WG ( 1) / 0.0666713443 0868813759 3568809893 332 D0 / DATA WG ( 2) / 0.1494513491 5058059314 5776339657 697 D0 / DATA WG ( 3) / 0.2190863625 1598204399 5534934228 163 D0 / DATA WG ( 4) / 0.2692667193 0999635509 1226921569 469 D0 / DATA WG ( 5) / 0.2955242247 1475287017 3892994651 338 D0 / C DATA XGK ( 1) / 0.9956571630 2580808073 5527280689 003 D0 / DATA XGK ( 2) / 0.9739065285 1717172007 7964012084 452 D0 / DATA XGK ( 3) / 0.9301574913 5570822600 1207180059 508 D0 / DATA XGK ( 4) / 0.8650633666 8898451073 2096688423 493 D0 / DATA XGK ( 5) / 0.7808177265 8641689706 3717578345 042 D0 / DATA XGK ( 6) / 0.6794095682 9902440623 4327365114 874 D0 / DATA XGK ( 7) / 0.5627571346 6860468333 9000099272 694 D0 / DATA XGK ( 8) / 0.4333953941 2924719079 9265943165 784 D0 / DATA XGK ( 9) / 0.2943928627 0146019813 1126603103 866 D0 / DATA XGK ( 10) / 0.1488743389 8163121088 4826001129 720 D0 / DATA XGK ( 11) / 0.0000000000 0000000000 0000000000 000 D0 / C DATA WGK ( 1) / 0.0116946388 6737187427 8064396062 192 D0 / DATA WGK ( 2) / 0.0325581623 0796472747 8818972459 390 D0 / DATA WGK ( 3) / 0.0547558965 7435199603 1381300244 580 D0 / DATA WGK ( 4) / 0.0750396748 1091995276 7043140916 190 D0 / DATA WGK ( 5) / 0.0931254545 8369760553 5065465083 366 D0 / DATA WGK ( 6) / 0.1093871588 0229764189 9210590325 805 D0 / DATA WGK ( 7) / 0.1234919762 6206585107 7958109831 074 D0 / DATA WGK ( 8) / 0.1347092173 1147332592 8054001771 707 D0 / DATA WGK ( 9) / 0.1427759385 7706008079 7094273138 717 D0 / DATA WGK ( 10) / 0.1477391049 0133849137 4841515972 068 D0 / DATA WGK ( 11) / 0.1494455540 0291690566 4936468389 821 D0 / C C C LIST OF MAJOR VARIABLES C ----------------------- C C CENTR - MID POINT OF THE INTERVAL C HLGTH - HALF-LENGTH OF THE INTERVAL C ABSC - ABSCISSA C FVAL* - FUNCTION VALUE C RESG - RESULT OF THE 10-POINT GAUSS FORMULA C RESK - RESULT OF THE 21-POINT KRONROD FORMULA C RESKH - APPROXIMATION TO THE MEAN VALUE OF F OVER (A,B), C I.E. TO I/(B-A) C C C MACHINE DEPENDENT CONSTANTS C --------------------------- C C EPMACH IS THE LARGEST RELATIVE SPACING. C UFLOW IS THE SMALLEST POSITIVE MAGNITUDE. C C***FIRST EXECUTABLE STATEMENT DQK21 EPMACH = D1MACH(4) UFLOW = D1MACH(1) C CENTR = 0.5D+00*(A+B) HLGTH = 0.5D+00*(B-A) DHLGTH = DABS(HLGTH) C C COMPUTE THE 21-POINT KRONROD APPROXIMATION TO C THE INTEGRAL, AND ESTIMATE THE ABSOLUTE ERROR. C RESG = 0.0D+00 IERR = 0 CALL F(CENTR,IERR,FC) IF (IERR .LT. 0) RETURN RESK = WGK(11)*FC RESABS = DABS(RESK) DO 10 J=1,5 JTW = 2*J ABSC = HLGTH*XGK(JTW) CALL F(CENTR-ABSC,IERR,FVAL1) IF (IERR .LT. 0) RETURN CALL F(CENTR+ABSC,IERR,FVAL2) IF (IERR .LT. 0) RETURN FV1(JTW) = FVAL1 FV2(JTW) = FVAL2 FSUM = FVAL1+FVAL2 RESG = RESG+WG(J)*FSUM RESK = RESK+WGK(JTW)*FSUM RESABS = RESABS+WGK(JTW)*(DABS(FVAL1)+DABS(FVAL2)) 10 CONTINUE DO 15 J = 1,5 JTWM1 = 2*J-1 ABSC = HLGTH*XGK(JTWM1) CALL F(CENTR-ABSC,IERR,FVAL1) IF (IERR .LT. 0) RETURN CALL F(CENTR+ABSC,IERR,FVAL2) IF (IERR .LT. 0) RETURN FV1(JTWM1) = FVAL1 FV2(JTWM1) = FVAL2 FSUM = FVAL1+FVAL2 RESK = RESK+WGK(JTWM1)*FSUM RESABS = RESABS+WGK(JTWM1)*(DABS(FVAL1)+DABS(FVAL2)) 15 CONTINUE RESKH = RESK*0.5D+00 RESASC = WGK(11)*DABS(FC-RESKH) DO 20 J=1,10 RESASC = RESASC+WGK(J)*(DABS(FV1(J)-RESKH)+DABS(FV2(J)-RESKH)) 20 CONTINUE RESULT = RESK*HLGTH RESABS = RESABS*DHLGTH RESASC = RESASC*DHLGTH ABSERR = DABS((RESK-RESG)*HLGTH) IF(RESASC.NE.0.0D+00.AND.ABSERR.NE.0.0D+00) * ABSERR = RESASC*DMIN1(0.1D+01,(0.2D+03*ABSERR/RESASC)**1.5D+00) IF(RESABS.GT.UFLOW/(0.5D+02*EPMACH)) ABSERR = DMAX1 * ((EPMACH*0.5D+02)*RESABS,ABSERR) RETURN END