# HG changeset patch # User dbateman # Date 1142532147 0 # Node ID a6bfe12c4c720b955d4096cf9221f13d5c2a6dda # Parent cbc323d109e4a9e893b9af5f4a6e58b17fe9f75d [project @ 2006-03-16 18:02:27 by dbateman] diff --git a/liboctave/sparse-dmsolve.cc b/liboctave/sparse-dmsolve.cc new file mode 100644 --- /dev/null +++ b/liboctave/sparse-dmsolve.cc @@ -0,0 +1,507 @@ +/* + +Copyright (C) 2006 David Bateman + +Octave is free software; you can redistribute it and/or modify it +under the terms of the GNU General Public License as published by the +Free Software Foundation; either version 2, or (at your option) any +later version. + +Octave is distributed in the hope that it will be useful, but WITHOUT +ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or +FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License +for more details. + +You should have received a copy of the GNU General Public License +along with this program; see the file COPYING. If not, write to the +Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, +Boston, MA 02110-1301, USA. + +*/ + +#ifdef HAVE_CONFIG_H +#include +#endif + + + +#include "ov-re-sparse.h" +#include "ov-cx-sparse.h" +#include "MArray2.h" +#include "MSparse.h" +#include "SparseQR.h" +#include "SparseCmplxQR.h" +#include "SparseType.h" +#include "oct-sort.h" + +template +static MSparse +dmsolve_extract (const MSparse &A, const octave_idx_type *Pinv, + const octave_idx_type *Q, octave_idx_type rst, + octave_idx_type rend, octave_idx_type cst, + octave_idx_type cend, octave_idx_type maxnz = -1, + bool lazy = false) +{ + octave_idx_type nz = (rend - rst) * (cend - cst); + maxnz = (maxnz < 0 ? A.nnz () : maxnz); + MSparse B (rend - rst, cend - cst, (nz < maxnz ? nz : maxnz)); + // Some sparse functions can support lazy indexing (where elements + // in the row are in no particular order), even though octave in + // general can't. For those functions that can using it is a big + // win here in terms of speed. + if (lazy) + { + nz = 0; + for (octave_idx_type j = cst ; j < cend ; j++) + { + octave_idx_type qq = (Q ? Q [j] : j); + B.xcidx (j - cst) = nz; + for (octave_idx_type p = A.cidx(qq) ; p < A.cidx (qq+1) ; p++) + { + OCTAVE_QUIT; + octave_idx_type r = (Pinv ? Pinv [A.ridx (p)] : A.ridx (p)); + if (r >= rst && r < rend) + { + B.xdata (nz) = A.data (p); + B.xridx (nz++) = r - rst ; + } + } + } + B.xcidx (cend - cst) = nz ; + } + else + { + OCTAVE_LOCAL_BUFFER (T, X, rend - rst); + octave_sort sort; + octave_idx_type *ri = B.xridx(); + nz = 0; + for (octave_idx_type j = cst ; j < cend ; j++) + { + octave_idx_type qq = (Q ? Q [j] : j); + B.xcidx (j - cst) = nz; + for (octave_idx_type p = A.cidx(qq) ; p < A.cidx (qq+1) ; p++) + { + OCTAVE_QUIT; + octave_idx_type r = (Pinv ? Pinv [A.ridx (p)] : A.ridx (p)); + if (r >= rst && r < rend) + { + X [r-rst] = A.data (p); + B.xridx (nz++) = r - rst ; + } + } + sort.sort (ri + B.xcidx (j - cst), nz - B.xcidx (j - cst)); + for (octave_idx_type p = B.cidx (j - cst); p < nz; p++) + B.xdata (p) = X [B.xridx (p)]; + } + B.xcidx (cend - cst) = nz ; + } + + return B; +} + +#if !defined (CXX_NEW_FRIEND_TEMPLATE_DECL) +static MSparse +dmsolve_extract (const MSparse &A, const octave_idx_type *Pinv, + const octave_idx_type *Q, octave_idx_type rst, + octave_idx_type rend, octave_idx_type cst, + octave_idx_type cend, octave_idx_type maxnz, + bool lazy); + +static MSparse +dmsolve_extract (const MSparse &A, const octave_idx_type *Pinv, + const octave_idx_type *Q, octave_idx_type rst, + octave_idx_type rend, octave_idx_type cst, + octave_idx_type cend, octave_idx_type maxnz, + bool lazy); +#endif + +template +static MArray2 +dmsolve_extract (const MArray2 &m, const octave_idx_type *, + const octave_idx_type *, octave_idx_type r1, + octave_idx_type r2, octave_idx_type c1, + octave_idx_type c2) +{ + r2 -= 1; + c2 -= 1; + if (r1 > r2) { octave_idx_type tmp = r1; r1 = r2; r2 = tmp; } + if (c1 > c2) { octave_idx_type tmp = c1; c1 = c2; c2 = tmp; } + + octave_idx_type new_r = r2 - r1 + 1; + octave_idx_type new_c = c2 - c1 + 1; + + MArray2 result (new_r, new_c); + + for (octave_idx_type j = 0; j < new_c; j++) + for (octave_idx_type i = 0; i < new_r; i++) + result.xelem (i, j) = m.elem (r1+i, c1+j); + + return result; +} + +#if !defined (CXX_NEW_FRIEND_TEMPLATE_DECL) +static MArray2 +dmsolve_extract (const MArray2 &m, const octave_idx_type *, + const octave_idx_type *, octave_idx_type r1, + octave_idx_type r2, octave_idx_type c1, + octave_idx_type c2) + +static MArray2 +dmsolve_extract (const MArray2 &m, const octave_idx_type *, + const octave_idx_type *, octave_idx_type r1, + octave_idx_type r2, octave_idx_type c1, + octave_idx_type c2) +#endif + +template +static void +dmsolve_insert (MArray2 &a, const MArray2 &b, const octave_idx_type *Q, + octave_idx_type r, octave_idx_type c) +{ + T *ax = a.fortran_vec(); + const T *bx = b.fortran_vec(); + octave_idx_type anr = a.rows(); + octave_idx_type nr = b.rows(); + octave_idx_type nc = b.cols(); + for (octave_idx_type j = 0; j < nc; j++) + { + octave_idx_type aoff = (c + j) * anr; + octave_idx_type boff = j * nr; + for (octave_idx_type i = 0; i < nr; i++) + { + OCTAVE_QUIT; + ax [Q [r + i] + aoff] = bx [i + boff]; + } + } +} + +#if !defined (CXX_NEW_FRIEND_TEMPLATE_DECL) +static void +dmsolve_insert (MArray2 &a, const MArray2 &b, + const octave_idx_type *Q, octave_idx_type r, octave_idx_type c); + +static void +dmsolve_insert (MArray2 &a, const MArray2 &b, + const octave_idx_type *Q, octave_idx_type r, octave_idx_type c); +#endif + +template +static void +dmsolve_insert (MSparse &a, const MSparse &b, const octave_idx_type *Q, + octave_idx_type r, octave_idx_type c) +{ + octave_idx_type b_rows = b.rows (); + octave_idx_type b_cols = b.cols (); + octave_idx_type nr = a.rows (); + octave_idx_type nc = a.cols (); + + OCTAVE_LOCAL_BUFFER (octave_idx_type, Qinv, nr); + for (octave_idx_type i = 0; i < nr; i++) + Qinv [Q [i]] = i; + + // First count the number of elements in the final array + octave_idx_type nel = a.xcidx(c) + b.nnz (); + + if (c + b_cols < nc) + nel += a.xcidx(nc) - a.xcidx(c + b_cols); + + for (octave_idx_type i = c; i < c + b_cols; i++) + for (octave_idx_type j = a.xcidx(i); j < a.xcidx(i+1); j++) + if (Qinv [a.xridx(j)] < r || Qinv [a.xridx(j)] >= r + b_rows) + nel++; + + OCTAVE_LOCAL_BUFFER (T, X, nr); + octave_sort sort; + MSparse tmp (a); + a = MSparse (nr, nc, nel); + octave_idx_type *ri = a.xridx(); + + for (octave_idx_type i = 0; i < tmp.cidx(c); i++) + { + a.xdata(i) = tmp.xdata(i); + a.xridx(i) = tmp.xridx(i); + } + for (octave_idx_type i = 0; i < c + 1; i++) + a.xcidx(i) = tmp.xcidx(i); + + octave_idx_type ii = a.xcidx(c); + + for (octave_idx_type i = c; i < c + b_cols; i++) + { + OCTAVE_QUIT; + + for (octave_idx_type j = tmp.xcidx(i); j < tmp.xcidx(i+1); j++) + if (Qinv [tmp.xridx(j)] < r || Qinv [tmp.xridx(j)] >= r + b_rows) + { + X [tmp.xridx(j)] = tmp.xdata(j); + a.xridx(ii++) = tmp.xridx(j); + } + + OCTAVE_QUIT; + + for (octave_idx_type j = b.cidx(i-c); j < b.cidx(i-c+1); j++) + { + X [Q [r + b.ridx(j)]] = b.data(j); + a.xridx(ii++) = Q [r + b.ridx(j)]; + } + + sort.sort (ri + a.xcidx (i), ii - a.xcidx (i)); + for (octave_idx_type p = a.xcidx (i); p < ii; p++) + a.xdata (p) = X [a.xridx (p)]; + a.xcidx(i+1) = ii; + } + + for (octave_idx_type i = c + b_cols; i < nc; i++) + { + for (octave_idx_type j = tmp.xcidx(i); j < tmp.cidx(i+1); j++) + { + a.xdata(ii) = tmp.xdata(j); + a.xridx(ii++) = tmp.xridx(j); + } + a.xcidx(i+1) = ii; + } +} + +#if !defined (CXX_NEW_FRIEND_TEMPLATE_DECL) +static void +dmsolve_insert (MSparse &a, const SparseMatrix &b, + const octave_idx_type *Q, octave_idx_type r, octave_idx_type c); + +static void +dmsolve_insert (MSparse &a, const MSparse &b, + const octave_idx_type *Q, octave_idx_type r, octave_idx_type c); +#endif + +template +static void +dmsolve_permute (MArray2 &a, const MArray2& b, const octave_idx_type *p) +{ + octave_idx_type b_nr = b.rows (); + octave_idx_type b_nc = b.cols (); + const T *Bx = b.fortran_vec(); + a.resize(b_nr, b_nc); + RT *Btx = a.fortran_vec(); + for (octave_idx_type j = 0; j < b_nc; j++) + { + octave_idx_type off = j * b_nr; + for (octave_idx_type i = 0; i < b_nr; i++) + { + OCTAVE_QUIT; + Btx [p [i] + off] = Bx [ i + off]; + } + } +} + +#if !defined (CXX_NEW_FRIEND_TEMPLATE_DECL) +static void +dmsolve_permute (MArray2 &a, const MArray2& b, + const octave_idx_type *p); + +static void +dmsolve_permute (MArray2 &a, const MArray2& b, + const octave_idx_type *p); + +static void +dmsolve_permute (MArray2 &a, const MArray2& b, + const octave_idx_type *p); +#endif + +template +static void +dmsolve_permute (MSparse &a, const MSparse& b, const octave_idx_type *p) +{ + octave_idx_type b_nr = b.rows (); + octave_idx_type b_nc = b.cols (); + octave_idx_type b_nz = b.nnz (); + octave_idx_type nz = 0; + a = MSparse (b_nr, b_nc, b_nz); + octave_sort sort; + octave_idx_type *ri = a.xridx(); + OCTAVE_LOCAL_BUFFER (RT, X, b_nr); + a.xcidx(0) = 0; + for (octave_idx_type j = 0; j < b_nc; j++) + { + for (octave_idx_type i = b.cidx(j); i < b.cidx(j+1); i++) + { + OCTAVE_QUIT; + octave_idx_type r = p [b.ridx (i)]; + X [r] = b.data (i); + a.xridx(nz++) = p [b.ridx (i)]; + } + sort.sort (ri + a.xcidx (j), nz - a.xcidx (j)); + for (octave_idx_type i = a.cidx (j); i < nz; i++) + { + OCTAVE_QUIT; + a.xdata (i) = X [a.xridx (i)]; + } + a.xcidx(j+1) = nz; + } +} + +#if !defined (CXX_NEW_FRIEND_TEMPLATE_DECL) +static void +dmsolve_permute (MSparse &a, const MSparse& b, + const octave_idx_type *p); + +static void +dmsolve_permute (MSparse &a, const MSparse& b, + const octave_idx_type *p); + +static void +dmsolve_permute (MSparse &a, const MSparse& b, + const octave_idx_type *p); +#endif + +static void +solve_singularity_warning (double) +{ + // Dummy singularity handler so that LU solver doesn't flag + // an error for numerically rank defficient matrices +} + +template +RT +dmsolve (const ST &a, const T &b, octave_idx_type &info) +{ + octave_idx_type nr = a.rows (); + octave_idx_type nc = a.cols (); + octave_idx_type b_nr = b.rows (); + octave_idx_type b_nc = b.cols (); + RT retval; + + if (nr < 1 || nc < 1 || nr != b_nr) + (*current_liboctave_error_handler) + ("matrix dimension mismatch in solution of minimum norm problem"); + else + { + octave_idx_type nnz_remaining = a.nnz (); + CXSPARSE_DNAME () csm; + csm.m = nr; + csm.n = nc; + csm.x = NULL; + csm.nz = -1; + csm.nzmax = a.nnz (); + // Cast away const on A, with full knowledge that CSparse won't touch it. + // Prevents the methods below making a copy of the data. + csm.p = const_cast(a.cidx ()); + csm.i = const_cast(a.ridx ()); + + CXSPARSE_DNAME (d) *dm = CXSPARSE_DNAME(_dmperm) (&csm); + octave_idx_type *p = dm->P; + octave_idx_type *q = dm->Q; + OCTAVE_LOCAL_BUFFER (octave_idx_type, pinv, nr); + for (octave_idx_type i = 0; i < nr; i++) + pinv [p [i]] = i; + RT btmp; + dmsolve_permute (btmp, b, pinv); + SparseType mtyp (SparseType::Full); + info = 0; + retval.resize (nc, b_nc); + + // Leading over-determined block + if (dm->rr [2] < nr && dm->cc [3] < nc) + { + ST m = dmsolve_extract (a, pinv, q, dm->rr [2], nr, dm->cc [3], nc, + nnz_remaining, true); + nnz_remaining -= m.nnz(); + RT mtmp = + qrsolve (m, dmsolve_extract (btmp, NULL, NULL, dm->rr[2], b_nr, 0, + b_nc), info); + dmsolve_insert (retval, mtmp, q, dm->cc [3], 0); + if (dm->rr [2] > 0 && !info && !error_state) + { + m = dmsolve_extract (a, pinv, q, 0, dm->rr [2], + dm->cc [3], nc, nnz_remaining, true); + nnz_remaining -= m.nnz(); + RT ctmp = dmsolve_extract (btmp, NULL, NULL, 0, + dm->rr[2], 0, b_nc); + btmp.insert (ctmp - m * mtmp, 0, 0); + } + } + + // Structurally non-singular blocks + // XXX FIXME XXX Should use fine Dulmange-Mendelsohn decomposition here. + if (dm->rr [1] < dm->rr [2] && dm->cc [2] < dm->cc [3] && + !info && !error_state) + { + ST m = dmsolve_extract (a, pinv, q, dm->rr [1], dm->rr [2], + dm->cc [2], dm->cc [3], nnz_remaining, false); + nnz_remaining -= m.nnz(); + RT btmp2 = dmsolve_extract (btmp, NULL, NULL, dm->rr [1], dm->rr [2], + 0, b_nc); + double rcond = 0.0; + RT mtmp = m.solve (mtyp, btmp2, info, rcond, + solve_singularity_warning); + if (info != 0) + { + info = 0; + mtmp = qrsolve (m, btmp2, info); + } + + dmsolve_insert (retval, mtmp, q, dm->cc [2], 0); + if (dm->rr [1] > 0 && !info && !error_state) + { + m = dmsolve_extract (a, pinv, q, 0, dm->rr [1], dm->cc [2], + dm->cc [3], nnz_remaining, true); + nnz_remaining -= m.nnz(); + RT ctmp = dmsolve_extract (btmp, NULL, NULL, 0, + dm->rr[1], 0, b_nc); + btmp.insert (ctmp - m * mtmp, 0, 0); + } + } + + // Trailing under-determined block + if (dm->rr [1] > 0 && dm->cc [2] > 0 && !info && !error_state) + { + ST m = dmsolve_extract (a, pinv, q, 0, dm->rr [1], 0, + dm->cc [2], nnz_remaining, true); + RT mtmp = + qrsolve (m, dmsolve_extract(btmp, NULL, NULL, 0, dm->rr [1] , 0, + b_nc), info); + dmsolve_insert (retval, mtmp, q, 0, 0); + } + + CXSPARSE_DNAME (_dfree) (dm); + } + return retval; +} + +#if !defined (CXX_NEW_FRIEND_TEMPLATE_DECL) +extern Matrix +dmsolve (const SparseMatrix &a, const Matrix &b, + octave_idx_type &info); + +extern ComplexMatrix +dmsolve (const SparseMatrix &a, const ComplexMatrix &b, + octave_idx_type &info); + +extern ComplexMatrix +dmsolve (const SparseComplexMatrix &a, const Matrix &b, + octave_idx_type &info); + +extern ComplexMatrix +dmsolve (const SparseComplexMatrix &a, const ComplexMatrix &b, + octave_idx_type &info); + +extern SparseMatrix +dmsolve (const SparseMatrix &a, const SparseMatrix &b, + octave_idx_type &info); + +extern SparseComplexMatrix +dmsolve (const SparseMatrix &a, const SparseComplexMatrix &b, + octave_idx_type &info); + +extern SparseComplexMatrix +dmsolve (const SparseComplexMatrix &a, const SparseMatrix &b, + octave_idx_type &info); + +extern SparseComplexMatrix +dmsolve (const SparseComplexMatrix &a, const SparseComplexMatrix &b, + octave_idx_type &info); +#endif + +/* +;;; Local Variables: *** +;;; mode: C++ *** +;;; End: *** +*/