changeset 3271:d7af069013cf

[project @ 1999-10-01 21:39:49 by jwe]
author jwe
date Fri, 01 Oct 1999 21:39:50 +0000
parents fe641c25df90
children 9e0c8e289555
files libcruft/lapack/dpotf2.f libcruft/lapack/dpotrf.f
diffstat 2 files changed, 354 insertions(+), 0 deletions(-) [+]
line wrap: on
line diff
new file mode 100644
--- /dev/null
+++ b/libcruft/lapack/dpotf2.f
@@ -0,0 +1,168 @@
+      SUBROUTINE DPOTF2( UPLO, N, A, LDA, INFO )
+*
+*  -- LAPACK routine (version 1.0) --
+*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
+*     Courant Institute, Argonne National Lab, and Rice University
+*     February 29, 1992
+*
+*     .. Scalar Arguments ..
+      CHARACTER          UPLO
+      INTEGER            INFO, LDA, N
+*     ..
+*     .. Array Arguments ..
+      DOUBLE PRECISION   A( LDA, * )
+*     ..
+*
+*  Purpose
+*  =======
+*
+*  DPOTF2 computes the Cholesky factorization of a real symmetric
+*  positive definite matrix A.
+*
+*  The factorization has the form
+*     A = U' * U ,  if UPLO = 'U', or
+*     A = L  * L',  if UPLO = 'L',
+*  where U is an upper triangular matrix and L is lower triangular.
+*
+*  This is the unblocked version of the algorithm, calling Level 2 BLAS.
+*
+*  Arguments
+*  =========
+*
+*  UPLO    (input) CHARACTER*1
+*          Specifies whether the upper or lower triangular part of the
+*          symmetric matrix A is stored.
+*          = 'U':  Upper triangular
+*          = 'L':  Lower triangular
+*
+*  N       (input) INTEGER
+*          The order of the matrix A.  N >= 0.
+*
+*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
+*          On entry, the symmetric matrix A.  If UPLO = 'U', the leading
+*          n by n upper triangular part of A contains the upper
+*          triangular part of the matrix A, and the strictly lower
+*          triangular part of A is not referenced.  If UPLO = 'L', the
+*          leading n by n lower triangular part of A contains the lower
+*          triangular part of the matrix A, and the strictly upper
+*          triangular part of A is not referenced.
+*
+*          On exit, if INFO = 0, the factor U or L from the Cholesky
+*          factorization A = U'*U  or A = L*L'.
+*
+*  LDA     (input) INTEGER
+*          The leading dimension of the array A.  LDA >= max(1,N).
+*
+*  INFO    (output) INTEGER
+*          = 0: successful exit
+*          < 0: if INFO = -k, the k-th argument had an illegal value
+*          > 0: if INFO = k, the leading minor of order k is not
+*               positive definite, and the factorization could not be
+*               completed.
+*
+*  =====================================================================
+*
+*     .. Parameters ..
+      DOUBLE PRECISION   ONE, ZERO
+      PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
+*     ..
+*     .. Local Scalars ..
+      LOGICAL            UPPER
+      INTEGER            J
+      DOUBLE PRECISION   AJJ
+*     ..
+*     .. External Functions ..
+      LOGICAL            LSAME
+      DOUBLE PRECISION   DDOT
+      EXTERNAL           LSAME, DDOT
+*     ..
+*     .. External Subroutines ..
+      EXTERNAL           DGEMV, DSCAL, XERBLA
+*     ..
+*     .. Intrinsic Functions ..
+      INTRINSIC          MAX, SQRT
+*     ..
+*     .. Executable Statements ..
+*
+*     Test the input parameters.
+*
+      INFO = 0
+      UPPER = LSAME( UPLO, 'U' )
+      IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
+         INFO = -1
+      ELSE IF( N.LT.0 ) THEN
+         INFO = -2
+      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
+         INFO = -4
+      END IF
+      IF( INFO.NE.0 ) THEN
+         CALL XERBLA( 'DPOTF2', -INFO )
+         RETURN
+      END IF
+*
+*     Quick return if possible
+*
+      IF( N.EQ.0 )
+     $   RETURN
+*
+      IF( UPPER ) THEN
+*
+*        Compute the Cholesky factorization A = U'*U.
+*
+         DO 10 J = 1, N
+*
+*           Compute U(J,J) and test for non-positive-definiteness.
+*
+            AJJ = A( J, J ) - DDOT( J-1, A( 1, J ), 1, A( 1, J ), 1 )
+            IF( AJJ.LE.ZERO ) THEN
+               A( J, J ) = AJJ
+               GO TO 30
+            END IF
+            AJJ = SQRT( AJJ )
+            A( J, J ) = AJJ
+*
+*           Compute elements J+1:N of row J.
+*
+            IF( J.LT.N ) THEN
+               CALL DGEMV( 'Transpose', J-1, N-J, -ONE, A( 1, J+1 ),
+     $                     LDA, A( 1, J ), 1, ONE, A( J, J+1 ), LDA )
+               CALL DSCAL( N-J, ONE / AJJ, A( J, J+1 ), LDA )
+            END IF
+   10    CONTINUE
+      ELSE
+*
+*        Compute the Cholesky factorization A = L*L'.
+*
+         DO 20 J = 1, N
+*
+*           Compute L(J,J) and test for non-positive-definiteness.
+*
+            AJJ = A( J, J ) - DDOT( J-1, A( J, 1 ), LDA, A( J, 1 ),
+     $            LDA )
+            IF( AJJ.LE.ZERO ) THEN
+               A( J, J ) = AJJ
+               GO TO 30
+            END IF
+            AJJ = SQRT( AJJ )
+            A( J, J ) = AJJ
+*
+*           Compute elements J+1:N of column J.
+*
+            IF( J.LT.N ) THEN
+               CALL DGEMV( 'No transpose', N-J, J-1, -ONE, A( J+1, 1 ),
+     $                     LDA, A( J, 1 ), LDA, ONE, A( J+1, J ), 1 )
+               CALL DSCAL( N-J, ONE / AJJ, A( J+1, J ), 1 )
+            END IF
+   20    CONTINUE
+      END IF
+      GO TO 40
+*
+   30 CONTINUE
+      INFO = J
+*
+   40 CONTINUE
+      RETURN
+*
+*     End of DPOTF2
+*
+      END
new file mode 100644
--- /dev/null
+++ b/libcruft/lapack/dpotrf.f
@@ -0,0 +1,186 @@
+      SUBROUTINE DPOTRF( UPLO, N, A, LDA, INFO )
+*
+*  -- LAPACK routine (version 1.0) --
+*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
+*     Courant Institute, Argonne National Lab, and Rice University
+*     February 29, 1992
+*
+*     .. Scalar Arguments ..
+      CHARACTER          UPLO
+      INTEGER            INFO, LDA, N
+*     ..
+*     .. Array Arguments ..
+      DOUBLE PRECISION   A( LDA, * )
+*     ..
+*
+*  Purpose
+*  =======
+*
+*  DPOTRF computes the Cholesky factorization of a real symmetric
+*  positive definite matrix A.
+*
+*  The factorization has the form
+*     A = U' * U ,  if UPLO = 'U', or
+*     A = L  * L',  if UPLO = 'L',
+*  where U is an upper triangular matrix and L is lower triangular.
+*
+*  This is the block version of the algorithm, calling Level 3 BLAS.
+*
+*  Arguments
+*  =========
+*
+*  UPLO    (input) CHARACTER*1
+*          Specifies whether the upper or lower triangular part of the
+*          symmetric matrix A is stored.
+*          = 'U':  Upper triangular
+*          = 'L':  Lower triangular
+*
+*  N       (input) INTEGER
+*          The order of the matrix A.  N >= 0.
+*
+*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
+*          On entry, the symmetric matrix A.  If UPLO = 'U', the leading
+*          n by n upper triangular part of A contains the upper
+*          triangular part of the matrix A, and the strictly lower
+*          triangular part of A is not referenced.  If UPLO = 'L', the
+*          leading n by n lower triangular part of A contains the lower
+*          triangular part of the matrix A, and the strictly upper
+*          triangular part of A is not referenced.
+*
+*          On exit, if INFO = 0, the factor U or L from the Cholesky
+*          factorization A = U'*U or A = L*L'.
+*
+*  LDA     (input) INTEGER
+*          The leading dimension of the array A.  LDA >= max(1,N).
+*
+*  INFO    (output) INTEGER
+*          = 0: successful exit
+*          < 0: if INFO = -k, the k-th argument had an illegal value
+*          > 0: if INFO = k, the leading minor of order k is not
+*               positive definite, and the factorization could not be
+*               completed.
+*
+*  =====================================================================
+*
+*     .. Parameters ..
+      DOUBLE PRECISION   ONE
+      PARAMETER          ( ONE = 1.0D+0 )
+*     ..
+*     .. Local Scalars ..
+      LOGICAL            UPPER
+      INTEGER            J, JB, NB
+*     ..
+*     .. External Functions ..
+      LOGICAL            LSAME
+      INTEGER            ILAENV
+      EXTERNAL           LSAME, ILAENV
+*     ..
+*     .. External Subroutines ..
+      EXTERNAL           DGEMM, DPOTF2, DSYRK, DTRSM, XERBLA
+*     ..
+*     .. Intrinsic Functions ..
+      INTRINSIC          MAX, MIN
+*     ..
+*     .. Executable Statements ..
+*
+*     Test the input parameters.
+*
+      INFO = 0
+      UPPER = LSAME( UPLO, 'U' )
+      IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
+         INFO = -1
+      ELSE IF( N.LT.0 ) THEN
+         INFO = -2
+      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
+         INFO = -4
+      END IF
+      IF( INFO.NE.0 ) THEN
+         CALL XERBLA( 'DPOTRF', -INFO )
+         RETURN
+      END IF
+*
+*     Quick return if possible
+*
+      IF( N.EQ.0 )
+     $   RETURN
+*
+*     Determine the block size for this environment.
+*
+      NB = ILAENV( 1, 'DPOTRF', UPLO, N, -1, -1, -1 )
+      IF( NB.LE.1 .OR. NB.GE.N ) THEN
+*
+*        Use unblocked code.
+*
+         CALL DPOTF2( UPLO, N, A, LDA, INFO )
+      ELSE
+*
+*        Use blocked code.
+*
+         IF( UPPER ) THEN
+*
+*           Compute the Cholesky factorization A = U'*U.
+*
+            DO 10 J = 1, N, NB
+*
+*              Update and factorize the current diagonal block and test
+*              for non-positive-definiteness.
+*
+               JB = MIN( NB, N-J+1 )
+               CALL DSYRK( 'Upper', 'Transpose', JB, J-1, -ONE,
+     $                     A( 1, J ), LDA, ONE, A( J, J ), LDA )
+               CALL DPOTF2( 'Upper', JB, A( J, J ), LDA, INFO )
+               IF( INFO.NE.0 )
+     $            GO TO 30
+               IF( J+JB.LE.N ) THEN
+*
+*                 Compute the current block row.
+*
+                  CALL DGEMM( 'Transpose', 'No transpose', JB, N-J-JB+1,
+     $                        J-1, -ONE, A( 1, J ), LDA, A( 1, J+JB ),
+     $                        LDA, ONE, A( J, J+JB ), LDA )
+                  CALL DTRSM( 'Left', 'Upper', 'Transpose', 'Non-unit',
+     $                        JB, N-J-JB+1, ONE, A( J, J ), LDA,
+     $                        A( J, J+JB ), LDA )
+               END IF
+   10       CONTINUE
+*
+         ELSE
+*
+*           Compute the Cholesky factorization A = L*L'.
+*
+            DO 20 J = 1, N, NB
+*
+*              Update and factorize the current diagonal block and test
+*              for non-positive-definiteness.
+*
+               JB = MIN( NB, N-J+1 )
+               CALL DSYRK( 'Lower', 'No transpose', JB, J-1, -ONE,
+     $                     A( J, 1 ), LDA, ONE, A( J, J ), LDA )
+               CALL DPOTF2( 'Lower', JB, A( J, J ), LDA, INFO )
+               IF( INFO.NE.0 )
+     $            GO TO 30
+               IF( J+JB.LE.N ) THEN
+*
+*                 Compute the current block column.
+*
+                  CALL DGEMM( 'No transpose', 'Transpose', N-J-JB+1, JB,
+     $                        J-1, -ONE, A( J+JB, 1 ), LDA, A( J, 1 ),
+     $                        LDA, ONE, A( J+JB, J ), LDA )
+                  CALL DTRSM( 'Right', 'Lower', 'Transpose', 'Non-unit',
+     $                        N-J-JB+1, JB, ONE, A( J, J ), LDA,
+     $                        A( J+JB, J ), LDA )
+               END IF
+   20       CONTINUE
+         END IF
+      END IF
+      GO TO 40
+*
+   30 CONTINUE
+      INFO = INFO + J - 1
+*
+   40 CONTINUE
+      RETURN
+*
+*     End of DPOTRF
+*
+      END