view liboctave/DASSL-opts.in @ 14557:e8e86ae3abbc

make diag (x, m, n) return a proper diagonal matrix object (bug #36099) * Array.h, Array.cc (Array<T>::diag (octave_idx_type, octave_idx_type) const): New function. * CMatrix.h, CMatrix.cc (ComplexMatrix::diag (octave_idx_type, octave_idx_type) const): New function. * dMatrix.h, dMatrix.cc (Matrix::diag (octave_idx_type, octave_idx_type) const): New function. * fCMatrix.h, fCMatrix.cc (FloatComplexMatrix::diag (octave_idx_type, octave_idx_type) const): New function. * fMatrix.h, fMatrix.cc (FloatMatrix::diag (octave_idx_type, octave_idx_type) const): New function. * CNDArray.cc, CNDArray.h (ComplexNDArray::diag (octave_idx_type, octave_idx_type) const): New forwarding function. * boolNDArray.cc, boolNDArray.h (boolNDArray::diag (octave_idx_type, octave_idx_type) const): New forwarding function. * chNDArray.cc, chNDArray.h (charNDArray::diag (octave_idx_type, octave_idx_type) const): New forwarding function. * dNDArray.cc, dNDArray.h (NDArray::diag (octave_idx_type, octave_idx_type) const): New forwarding function. * fCNDArray.cc, fCNDArray.h (FloatComplexNDArray::diag (octave_idx_type, octave_idx_type) const): New forwarding function. * fNDArray.cc, fNDArray.h (FloatNDArray::diag (octave_idx_type, octave_idx_type) const): New forwarding function. * intNDArray.cc, intNDArray.h (intNDArray<T>::diag (octave_idx_type, octave_idx_type) const): New forwarding function. * Cell.cc, Cell.h (Cell::diag (octave_idx_type, octave_idx_type) const): New function. * ov.h (octave_value::diag (octave_idx_type, octave_idx_type)): New function. * ov-base.h, ov-base.cc (octave_base_value::diag (octave_idx_type, octave_idx_type) const): New virtual function and default implementation. * ov-base-mat.h (octave_base_matrix<T>::diag (octave_idx_type, octave_idx_type) const): New function. * ov-base-scalar.cc, ov-base-scalar.h (octave_base_scalar<T>::diag (octave_idx_type, octave_idx_type)): New function. * ov-complex.cc, ov-complex.h (octave_complex::diag (octave_idx_type, octave_idx_type) const): New function. * ov-cx-mat.cc, ov-complex.h (octave_complex_matrix::diag (octave_idx_type, octave_idx_type) const): New function. * ov-float.cc, ov-float.h (octave_float_scalar::diag (octave_idx_type, octave_idx_type) const): New function. * ov-flt-complex.cc, ov-flt-complex.h (octave_float_complex::diag (octave_idx_type, octave_idx_type) const): New function. * ov-flt-cx-mat.cc, ov-flt-cx-mat.h (octave_float_complex_matrix::diag (octave_idx_type, octave_idx_type) const): New function. * ov-flt-re-mat.cc, ov-flt-re-mat.h (octave_float_matrix::diag (octave_idx_type, octave_idx_type) const): New function. * ov-range.cc, ov-range.h (octave_range::diag (octave_idx_type, octave_idx_type) const): New function. * ov-re-mat.cc, ov-re-mat.h (octave_matrix::diag (octave_idx_type, octave_idx_type) const): New function. * ov-scalar.cc, ov-scalar.h (octave_scalar::diag (octave_idx_type, octave_idx_type) const): New function. * data.cc (Fdiag): Use two-arg octave_value::diag method for dispatching. New tests.
author John W. Eaton <jwe@octave.org>
date Thu, 12 Apr 2012 16:27:39 -0400
parents 72c96de7a403
children 61822c866ba1
line wrap: on
line source

# Copyright (C) 2002-2012 John W. Eaton
#
# This file is part of Octave.
#
# Octave is free software; you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3 of the License, or (at
# your option) any later version.
#
# Octave is distributed in the hope that it will be useful, but WITHOUT
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
# FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
# for more details.
#
# You should have received a copy of the GNU General Public License
# along with Octave; see the file COPYING.  If not, see
# <http://www.gnu.org/licenses/>.

CLASS = "DASSL"

INCLUDE = "DAE.h"

OPTION
  NAME = "absolute tolerance"
  DOC_ITEM
Absolute tolerance.  May be either vector or scalar.  If a vector, it
must match the dimension of the state vector, and the relative
tolerance must also be a vector of the same length.

  END_DOC_ITEM
  TYPE = "Array<double>"
  SET_ARG_TYPE = "const $TYPE&"
  INIT_BODY
    $OPTVAR.resize (dim_vector (1, 1));
    $OPTVAR(0) = ::sqrt (DBL_EPSILON);
  END_INIT_BODY
  SET_CODE
    void set_$OPT (double val)
      {
        $OPTVAR.resize (dim_vector (1, 1));
        $OPTVAR(0) = (val > 0.0) ? val : ::sqrt (DBL_EPSILON);
        reset = true;
      }

    void set_$OPT (const $TYPE& val)
      { $OPTVAR = val; reset = true; }
  END_SET_CODE
END_OPTION

OPTION
  NAME = "relative tolerance"
  DOC_ITEM
Relative tolerance.  May be either vector or scalar.  If a vector, it
must match the dimension of the state vector, and the absolute
tolerance must also be a vector of the same length.

The local error test applied at each integration step is

@example
@group
  abs (local error in x(i))
       <= rtol(i) * abs (Y(i)) + atol(i)
@end group
@end example

  END_DOC_ITEM
  TYPE = "Array<double>"
  SET_ARG_TYPE = "const $TYPE&"
  INIT_BODY
    $OPTVAR.resize (dim_vector (1, 1));
    $OPTVAR(0) = ::sqrt (DBL_EPSILON);
  END_INIT_BODY
  SET_CODE
    void set_$OPT (double val)
      {
        $OPTVAR.resize (dim_vector (1, 1));
        $OPTVAR(0) = (val > 0.0) ? val : ::sqrt (DBL_EPSILON);
        reset = true;
      }

    void set_$OPT (const $TYPE& val)
      { $OPTVAR = val; reset = true; }
  END_SET_CODE
END_OPTION

OPTION
  NAME = "compute consistent initial condition"
  DOC_ITEM
If nonzero, @code{dassl} will attempt to compute a consistent set of initial
conditions.  This is generally not reliable, so it is best to provide
a consistent set and leave this option set to zero.

  END_DOC_ITEM
  TYPE = "octave_idx_type"
  INIT_VALUE = "0"
  SET_EXPR = "val"
END_OPTION

OPTION
  NAME = "enforce nonnegativity constraints"
  DOC_ITEM
If you know that the solutions to your equations will always be
non-negative, it may help to set this parameter to a nonzero
value.  However, it is probably best to try leaving this option set to
zero first, and only setting it to a nonzero value if that doesn't
work very well.

  END_DOC_ITEM
  TYPE = "octave_idx_type"
  INIT_VALUE = "0"
  SET_EXPR = "val"
END_OPTION

OPTION
  NAME = "initial step size"
  DOC_ITEM
Differential-algebraic problems may occasionally suffer from severe
scaling difficulties on the first step.  If you know a great deal
about the scaling of your problem, you can help to alleviate this
problem by specifying an initial stepsize.

  END_DOC_ITEM
  TYPE = "double"
  INIT_VALUE = "-1.0"
  SET_EXPR = "(val >= 0.0) ? val : -1.0"
END_OPTION

OPTION
  NAME = "maximum order"
  DOC_ITEM
Restrict the maximum order of the solution method.  This option must
be between 1 and 5, inclusive.

  END_DOC_ITEM
  TYPE = "octave_idx_type"
  INIT_VALUE = "-1"
  SET_EXPR = "val"
END_OPTION

OPTION
  NAME = "maximum step size"
  DOC_ITEM
Setting the maximum stepsize will avoid passing over very large
regions  (default is not specified).

  END_DOC_ITEM
  TYPE = "double"
  INIT_VALUE = "-1.0"
  SET_EXPR = "(val >= 0.0) ? val : -1.0"
END_OPTION

OPTION
  NAME = "step limit"
  DOC_ITEM
Maximum number of integration steps to attempt on a single call to the
underlying Fortran code.
  END_DOC_ITEM
  TYPE = "octave_idx_type"
  INIT_VALUE = "-1"
  SET_EXPR = "(val >= 0) ? val : -1"
END_OPTION