Mercurial > hg > octave-nkf
view liboctave/DASSL-opts.in @ 14557:e8e86ae3abbc
make diag (x, m, n) return a proper diagonal matrix object (bug #36099)
* Array.h, Array.cc (Array<T>::diag (octave_idx_type, octave_idx_type)
const): New function.
* CMatrix.h, CMatrix.cc (ComplexMatrix::diag (octave_idx_type,
octave_idx_type) const): New function.
* dMatrix.h, dMatrix.cc (Matrix::diag (octave_idx_type,
octave_idx_type) const): New function.
* fCMatrix.h, fCMatrix.cc (FloatComplexMatrix::diag (octave_idx_type,
octave_idx_type) const): New function.
* fMatrix.h, fMatrix.cc (FloatMatrix::diag (octave_idx_type,
octave_idx_type) const): New function.
* CNDArray.cc, CNDArray.h (ComplexNDArray::diag (octave_idx_type,
octave_idx_type) const): New forwarding function.
* boolNDArray.cc, boolNDArray.h (boolNDArray::diag (octave_idx_type,
octave_idx_type) const): New forwarding function.
* chNDArray.cc, chNDArray.h (charNDArray::diag (octave_idx_type,
octave_idx_type) const): New forwarding function.
* dNDArray.cc, dNDArray.h (NDArray::diag (octave_idx_type,
octave_idx_type) const): New forwarding function.
* fCNDArray.cc, fCNDArray.h (FloatComplexNDArray::diag
(octave_idx_type, octave_idx_type) const): New forwarding function.
* fNDArray.cc, fNDArray.h (FloatNDArray::diag (octave_idx_type,
octave_idx_type) const): New forwarding function.
* intNDArray.cc, intNDArray.h (intNDArray<T>::diag (octave_idx_type,
octave_idx_type) const): New forwarding function.
* Cell.cc, Cell.h (Cell::diag (octave_idx_type, octave_idx_type)
const): New function.
* ov.h (octave_value::diag (octave_idx_type, octave_idx_type)):
New function.
* ov-base.h, ov-base.cc (octave_base_value::diag (octave_idx_type,
octave_idx_type) const): New virtual function and default implementation.
* ov-base-mat.h (octave_base_matrix<T>::diag (octave_idx_type,
octave_idx_type) const): New function.
* ov-base-scalar.cc, ov-base-scalar.h (octave_base_scalar<T>::diag
(octave_idx_type, octave_idx_type)): New function.
* ov-complex.cc, ov-complex.h (octave_complex::diag (octave_idx_type,
octave_idx_type) const): New function.
* ov-cx-mat.cc, ov-complex.h (octave_complex_matrix::diag
(octave_idx_type, octave_idx_type) const): New function.
* ov-float.cc, ov-float.h (octave_float_scalar::diag (octave_idx_type,
octave_idx_type) const): New function.
* ov-flt-complex.cc, ov-flt-complex.h (octave_float_complex::diag
(octave_idx_type, octave_idx_type) const): New function.
* ov-flt-cx-mat.cc, ov-flt-cx-mat.h (octave_float_complex_matrix::diag
(octave_idx_type, octave_idx_type) const): New function.
* ov-flt-re-mat.cc, ov-flt-re-mat.h (octave_float_matrix::diag
(octave_idx_type, octave_idx_type) const): New function.
* ov-range.cc, ov-range.h (octave_range::diag (octave_idx_type,
octave_idx_type) const): New function.
* ov-re-mat.cc, ov-re-mat.h (octave_matrix::diag (octave_idx_type,
octave_idx_type) const): New function.
* ov-scalar.cc, ov-scalar.h (octave_scalar::diag (octave_idx_type,
octave_idx_type) const): New function.
* data.cc (Fdiag): Use two-arg octave_value::diag method for
dispatching. New tests.
author | John W. Eaton <jwe@octave.org> |
---|---|
date | Thu, 12 Apr 2012 16:27:39 -0400 |
parents | 72c96de7a403 |
children | 61822c866ba1 |
line wrap: on
line source
# Copyright (C) 2002-2012 John W. Eaton # # This file is part of Octave. # # Octave is free software; you can redistribute it and/or modify it # under the terms of the GNU General Public License as published by the # Free Software Foundation; either version 3 of the License, or (at # your option) any later version. # # Octave is distributed in the hope that it will be useful, but WITHOUT # ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or # FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License # for more details. # # You should have received a copy of the GNU General Public License # along with Octave; see the file COPYING. If not, see # <http://www.gnu.org/licenses/>. CLASS = "DASSL" INCLUDE = "DAE.h" OPTION NAME = "absolute tolerance" DOC_ITEM Absolute tolerance. May be either vector or scalar. If a vector, it must match the dimension of the state vector, and the relative tolerance must also be a vector of the same length. END_DOC_ITEM TYPE = "Array<double>" SET_ARG_TYPE = "const $TYPE&" INIT_BODY $OPTVAR.resize (dim_vector (1, 1)); $OPTVAR(0) = ::sqrt (DBL_EPSILON); END_INIT_BODY SET_CODE void set_$OPT (double val) { $OPTVAR.resize (dim_vector (1, 1)); $OPTVAR(0) = (val > 0.0) ? val : ::sqrt (DBL_EPSILON); reset = true; } void set_$OPT (const $TYPE& val) { $OPTVAR = val; reset = true; } END_SET_CODE END_OPTION OPTION NAME = "relative tolerance" DOC_ITEM Relative tolerance. May be either vector or scalar. If a vector, it must match the dimension of the state vector, and the absolute tolerance must also be a vector of the same length. The local error test applied at each integration step is @example @group abs (local error in x(i)) <= rtol(i) * abs (Y(i)) + atol(i) @end group @end example END_DOC_ITEM TYPE = "Array<double>" SET_ARG_TYPE = "const $TYPE&" INIT_BODY $OPTVAR.resize (dim_vector (1, 1)); $OPTVAR(0) = ::sqrt (DBL_EPSILON); END_INIT_BODY SET_CODE void set_$OPT (double val) { $OPTVAR.resize (dim_vector (1, 1)); $OPTVAR(0) = (val > 0.0) ? val : ::sqrt (DBL_EPSILON); reset = true; } void set_$OPT (const $TYPE& val) { $OPTVAR = val; reset = true; } END_SET_CODE END_OPTION OPTION NAME = "compute consistent initial condition" DOC_ITEM If nonzero, @code{dassl} will attempt to compute a consistent set of initial conditions. This is generally not reliable, so it is best to provide a consistent set and leave this option set to zero. END_DOC_ITEM TYPE = "octave_idx_type" INIT_VALUE = "0" SET_EXPR = "val" END_OPTION OPTION NAME = "enforce nonnegativity constraints" DOC_ITEM If you know that the solutions to your equations will always be non-negative, it may help to set this parameter to a nonzero value. However, it is probably best to try leaving this option set to zero first, and only setting it to a nonzero value if that doesn't work very well. END_DOC_ITEM TYPE = "octave_idx_type" INIT_VALUE = "0" SET_EXPR = "val" END_OPTION OPTION NAME = "initial step size" DOC_ITEM Differential-algebraic problems may occasionally suffer from severe scaling difficulties on the first step. If you know a great deal about the scaling of your problem, you can help to alleviate this problem by specifying an initial stepsize. END_DOC_ITEM TYPE = "double" INIT_VALUE = "-1.0" SET_EXPR = "(val >= 0.0) ? val : -1.0" END_OPTION OPTION NAME = "maximum order" DOC_ITEM Restrict the maximum order of the solution method. This option must be between 1 and 5, inclusive. END_DOC_ITEM TYPE = "octave_idx_type" INIT_VALUE = "-1" SET_EXPR = "val" END_OPTION OPTION NAME = "maximum step size" DOC_ITEM Setting the maximum stepsize will avoid passing over very large regions (default is not specified). END_DOC_ITEM TYPE = "double" INIT_VALUE = "-1.0" SET_EXPR = "(val >= 0.0) ? val : -1.0" END_OPTION OPTION NAME = "step limit" DOC_ITEM Maximum number of integration steps to attempt on a single call to the underlying Fortran code. END_DOC_ITEM TYPE = "octave_idx_type" INIT_VALUE = "-1" SET_EXPR = "(val >= 0) ? val : -1" END_OPTION