1993
|
1 // RowVector manipulations. |
458
|
2 /* |
|
3 |
2847
|
4 Copyright (C) 1996, 1997 John W. Eaton |
458
|
5 |
|
6 This file is part of Octave. |
|
7 |
|
8 Octave is free software; you can redistribute it and/or modify it |
|
9 under the terms of the GNU General Public License as published by the |
|
10 Free Software Foundation; either version 2, or (at your option) any |
|
11 later version. |
|
12 |
|
13 Octave is distributed in the hope that it will be useful, but WITHOUT |
|
14 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
|
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
|
16 for more details. |
|
17 |
|
18 You should have received a copy of the GNU General Public License |
|
19 along with Octave; see the file COPYING. If not, write to the Free |
1315
|
20 Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. |
458
|
21 |
|
22 */ |
|
23 |
4192
|
24 #if defined (__GNUG__) && defined (USE_PRAGMA_INTERFACE_IMPLEMENTATION) |
1296
|
25 #pragma implementation |
|
26 #endif |
|
27 |
458
|
28 #ifdef HAVE_CONFIG_H |
1192
|
29 #include <config.h> |
458
|
30 #endif |
|
31 |
3503
|
32 #include <iostream> |
458
|
33 |
1847
|
34 #include "f77-fcn.h" |
1368
|
35 #include "lo-error.h" |
458
|
36 #include "mx-base.h" |
|
37 #include "mx-inlines.cc" |
1650
|
38 #include "oct-cmplx.h" |
458
|
39 |
|
40 // Fortran functions we call. |
|
41 |
|
42 extern "C" |
|
43 { |
3887
|
44 int F77_FUNC (zgemv, ZGEMV) (const char*, const int&, const int&, |
1253
|
45 const Complex&, const Complex*, |
|
46 const int&, const Complex*, const int&, |
|
47 const Complex&, Complex*, const int&, |
|
48 long); |
458
|
49 } |
|
50 |
1360
|
51 // Complex Row Vector class |
458
|
52 |
|
53 ComplexRowVector::ComplexRowVector (const RowVector& a) |
1214
|
54 : MArray<Complex> (a.length ()) |
458
|
55 { |
|
56 for (int i = 0; i < length (); i++) |
|
57 elem (i) = a.elem (i); |
|
58 } |
|
59 |
2386
|
60 bool |
458
|
61 ComplexRowVector::operator == (const ComplexRowVector& a) const |
|
62 { |
|
63 int len = length (); |
|
64 if (len != a.length ()) |
|
65 return 0; |
3769
|
66 return mx_inline_equal (data (), a.data (), len); |
458
|
67 } |
|
68 |
2386
|
69 bool |
458
|
70 ComplexRowVector::operator != (const ComplexRowVector& a) const |
|
71 { |
|
72 return !(*this == a); |
|
73 } |
|
74 |
|
75 // destructive insert/delete/reorder operations |
|
76 |
|
77 ComplexRowVector& |
|
78 ComplexRowVector::insert (const RowVector& a, int c) |
|
79 { |
|
80 int a_len = a.length (); |
4316
|
81 |
1699
|
82 if (c < 0 || c + a_len > length ()) |
458
|
83 { |
|
84 (*current_liboctave_error_handler) ("range error for insert"); |
|
85 return *this; |
|
86 } |
|
87 |
4316
|
88 if (a_len > 0) |
|
89 { |
|
90 make_unique (); |
|
91 |
|
92 for (int i = 0; i < a_len; i++) |
|
93 xelem (c+i) = a.elem (i); |
|
94 } |
458
|
95 |
|
96 return *this; |
|
97 } |
|
98 |
|
99 ComplexRowVector& |
|
100 ComplexRowVector::insert (const ComplexRowVector& a, int c) |
|
101 { |
|
102 int a_len = a.length (); |
4316
|
103 |
1699
|
104 if (c < 0 || c + a_len > length ()) |
458
|
105 { |
|
106 (*current_liboctave_error_handler) ("range error for insert"); |
|
107 return *this; |
|
108 } |
|
109 |
4316
|
110 if (a_len > 0) |
|
111 { |
|
112 make_unique (); |
|
113 |
|
114 for (int i = 0; i < a_len; i++) |
|
115 xelem (c+i) = a.elem (i); |
|
116 } |
458
|
117 |
|
118 return *this; |
|
119 } |
|
120 |
|
121 ComplexRowVector& |
|
122 ComplexRowVector::fill (double val) |
|
123 { |
|
124 int len = length (); |
4316
|
125 |
458
|
126 if (len > 0) |
4316
|
127 { |
|
128 make_unique (); |
|
129 |
|
130 for (int i = 0; i < len; i++) |
|
131 xelem (i) = val; |
|
132 } |
|
133 |
458
|
134 return *this; |
|
135 } |
|
136 |
|
137 ComplexRowVector& |
|
138 ComplexRowVector::fill (const Complex& val) |
|
139 { |
|
140 int len = length (); |
4316
|
141 |
458
|
142 if (len > 0) |
4316
|
143 { |
|
144 make_unique (); |
|
145 |
|
146 for (int i = 0; i < len; i++) |
|
147 xelem (i) = val; |
|
148 } |
|
149 |
458
|
150 return *this; |
|
151 } |
|
152 |
|
153 ComplexRowVector& |
|
154 ComplexRowVector::fill (double val, int c1, int c2) |
|
155 { |
|
156 int len = length (); |
4316
|
157 |
458
|
158 if (c1 < 0 || c2 < 0 || c1 >= len || c2 >= len) |
|
159 { |
|
160 (*current_liboctave_error_handler) ("range error for fill"); |
|
161 return *this; |
|
162 } |
|
163 |
|
164 if (c1 > c2) { int tmp = c1; c1 = c2; c2 = tmp; } |
|
165 |
4316
|
166 if (c2 >= c1) |
|
167 { |
|
168 make_unique (); |
|
169 |
|
170 for (int i = c1; i <= c2; i++) |
|
171 xelem (i) = val; |
|
172 } |
458
|
173 |
|
174 return *this; |
|
175 } |
|
176 |
|
177 ComplexRowVector& |
|
178 ComplexRowVector::fill (const Complex& val, int c1, int c2) |
|
179 { |
|
180 int len = length (); |
4316
|
181 |
458
|
182 if (c1 < 0 || c2 < 0 || c1 >= len || c2 >= len) |
|
183 { |
|
184 (*current_liboctave_error_handler) ("range error for fill"); |
|
185 return *this; |
|
186 } |
|
187 |
|
188 if (c1 > c2) { int tmp = c1; c1 = c2; c2 = tmp; } |
|
189 |
4316
|
190 if (c2 >= c1) |
|
191 { |
|
192 make_unique (); |
|
193 |
|
194 for (int i = c1; i <= c2; i++) |
|
195 xelem (i) = val; |
|
196 } |
458
|
197 |
|
198 return *this; |
|
199 } |
|
200 |
|
201 ComplexRowVector |
|
202 ComplexRowVector::append (const RowVector& a) const |
|
203 { |
|
204 int len = length (); |
|
205 int nc_insert = len; |
|
206 ComplexRowVector retval (len + a.length ()); |
|
207 retval.insert (*this, 0); |
|
208 retval.insert (a, nc_insert); |
|
209 return retval; |
|
210 } |
|
211 |
|
212 ComplexRowVector |
|
213 ComplexRowVector::append (const ComplexRowVector& a) const |
|
214 { |
|
215 int len = length (); |
|
216 int nc_insert = len; |
|
217 ComplexRowVector retval (len + a.length ()); |
|
218 retval.insert (*this, 0); |
|
219 retval.insert (a, nc_insert); |
|
220 return retval; |
|
221 } |
|
222 |
|
223 ComplexColumnVector |
|
224 ComplexRowVector::hermitian (void) const |
|
225 { |
|
226 int len = length (); |
3769
|
227 return ComplexColumnVector (mx_inline_conj_dup (data (), len), len); |
458
|
228 } |
|
229 |
|
230 ComplexColumnVector |
|
231 ComplexRowVector::transpose (void) const |
|
232 { |
1858
|
233 return ComplexColumnVector (*this); |
458
|
234 } |
|
235 |
|
236 ComplexRowVector |
|
237 conj (const ComplexRowVector& a) |
|
238 { |
|
239 int a_len = a.length (); |
|
240 ComplexRowVector retval; |
|
241 if (a_len > 0) |
3769
|
242 retval = ComplexRowVector (mx_inline_conj_dup (a.data (), a_len), a_len); |
458
|
243 return retval; |
|
244 } |
|
245 |
|
246 // resize is the destructive equivalent for this one |
|
247 |
|
248 ComplexRowVector |
|
249 ComplexRowVector::extract (int c1, int c2) const |
|
250 { |
|
251 if (c1 > c2) { int tmp = c1; c1 = c2; c2 = tmp; } |
|
252 |
|
253 int new_c = c2 - c1 + 1; |
|
254 |
|
255 ComplexRowVector result (new_c); |
|
256 |
|
257 for (int i = 0; i < new_c; i++) |
|
258 result.elem (i) = elem (c1+i); |
|
259 |
|
260 return result; |
|
261 } |
|
262 |
4316
|
263 ComplexRowVector |
|
264 ComplexRowVector::extract_n (int r1, int n) const |
|
265 { |
|
266 ComplexRowVector result (n); |
|
267 |
|
268 for (int i = 0; i < n; i++) |
|
269 result.elem (i) = elem (r1+i); |
|
270 |
|
271 return result; |
|
272 } |
|
273 |
458
|
274 // row vector by row vector -> row vector operations |
|
275 |
|
276 ComplexRowVector& |
|
277 ComplexRowVector::operator += (const RowVector& a) |
|
278 { |
|
279 int len = length (); |
2386
|
280 |
|
281 int a_len = a.length (); |
|
282 |
|
283 if (len != a_len) |
458
|
284 { |
2386
|
285 gripe_nonconformant ("operator +=", len, a_len); |
458
|
286 return *this; |
|
287 } |
|
288 |
|
289 if (len == 0) |
|
290 return *this; |
|
291 |
|
292 Complex *d = fortran_vec (); // Ensures only one reference to my privates! |
|
293 |
3769
|
294 mx_inline_add2 (d, a.data (), len); |
458
|
295 return *this; |
|
296 } |
|
297 |
|
298 ComplexRowVector& |
|
299 ComplexRowVector::operator -= (const RowVector& a) |
|
300 { |
|
301 int len = length (); |
2386
|
302 |
|
303 int a_len = a.length (); |
|
304 |
|
305 if (len != a_len) |
458
|
306 { |
2386
|
307 gripe_nonconformant ("operator -=", len, a_len); |
458
|
308 return *this; |
|
309 } |
|
310 |
|
311 if (len == 0) |
|
312 return *this; |
|
313 |
|
314 Complex *d = fortran_vec (); // Ensures only one reference to my privates! |
|
315 |
3769
|
316 mx_inline_subtract2 (d, a.data (), len); |
458
|
317 return *this; |
|
318 } |
|
319 |
|
320 // row vector by matrix -> row vector |
|
321 |
|
322 ComplexRowVector |
|
323 operator * (const ComplexRowVector& v, const ComplexMatrix& a) |
|
324 { |
1947
|
325 ComplexRowVector retval; |
|
326 |
458
|
327 int len = v.length (); |
1947
|
328 |
2386
|
329 int a_nr = a.rows (); |
|
330 int a_nc = a.cols (); |
|
331 |
|
332 if (a_nr != len) |
|
333 gripe_nonconformant ("operator *", 1, len, a_nr, a_nc); |
1947
|
334 else |
458
|
335 { |
1947
|
336 int a_nr = a.rows (); |
|
337 int a_nc = a.cols (); |
|
338 |
|
339 if (len == 0) |
|
340 retval.resize (a_nc, 0.0); |
|
341 else |
|
342 { |
|
343 // Transpose A to form A'*x == (x'*A)' |
|
344 |
|
345 int ld = a_nr; |
|
346 |
|
347 retval.resize (a_nc); |
|
348 Complex *y = retval.fortran_vec (); |
|
349 |
|
350 F77_XFCN (zgemv, ZGEMV, ("T", a_nr, a_nc, 1.0, a.data (), |
|
351 ld, v.data (), 1, 0.0, y, 1, 1L)); |
|
352 |
|
353 if (f77_exception_encountered) |
|
354 (*current_liboctave_error_handler) |
|
355 ("unrecoverable error in zgemv"); |
|
356 } |
458
|
357 } |
|
358 |
1947
|
359 return retval; |
458
|
360 } |
|
361 |
1205
|
362 ComplexRowVector |
|
363 operator * (const RowVector& v, const ComplexMatrix& a) |
|
364 { |
|
365 ComplexRowVector tmp (v); |
|
366 return tmp * a; |
|
367 } |
|
368 |
458
|
369 // other operations |
|
370 |
|
371 ComplexRowVector |
2676
|
372 ComplexRowVector::map (c_c_Mapper f) const |
458
|
373 { |
2676
|
374 ComplexRowVector b (*this); |
|
375 return b.apply (f); |
458
|
376 } |
|
377 |
2676
|
378 RowVector |
|
379 ComplexRowVector::map (d_c_Mapper f) const |
458
|
380 { |
2676
|
381 const Complex *d = data (); |
|
382 |
|
383 int len = length (); |
|
384 |
|
385 RowVector retval (len); |
|
386 |
|
387 double *r = retval.fortran_vec (); |
|
388 |
|
389 for (int i = 0; i < len; i++) |
|
390 r[i] = f (d[i]); |
|
391 |
|
392 return retval; |
|
393 } |
|
394 |
|
395 ComplexRowVector& |
|
396 ComplexRowVector::apply (c_c_Mapper f) |
|
397 { |
|
398 Complex *d = fortran_vec (); // Ensures only one reference to my privates! |
|
399 |
458
|
400 for (int i = 0; i < length (); i++) |
2676
|
401 d[i] = f (d[i]); |
|
402 |
|
403 return *this; |
458
|
404 } |
|
405 |
|
406 Complex |
|
407 ComplexRowVector::min (void) const |
|
408 { |
|
409 int len = length (); |
|
410 if (len == 0) |
|
411 return Complex (0.0); |
|
412 |
|
413 Complex res = elem (0); |
|
414 double absres = abs (res); |
|
415 |
|
416 for (int i = 1; i < len; i++) |
|
417 if (abs (elem (i)) < absres) |
|
418 { |
|
419 res = elem (i); |
|
420 absres = abs (res); |
|
421 } |
|
422 |
|
423 return res; |
|
424 } |
|
425 |
|
426 Complex |
|
427 ComplexRowVector::max (void) const |
|
428 { |
|
429 int len = length (); |
|
430 if (len == 0) |
|
431 return Complex (0.0); |
|
432 |
|
433 Complex res = elem (0); |
|
434 double absres = abs (res); |
|
435 |
|
436 for (int i = 1; i < len; i++) |
|
437 if (abs (elem (i)) > absres) |
|
438 { |
|
439 res = elem (i); |
|
440 absres = abs (res); |
|
441 } |
|
442 |
|
443 return res; |
|
444 } |
|
445 |
|
446 // i/o |
|
447 |
3504
|
448 std::ostream& |
|
449 operator << (std::ostream& os, const ComplexRowVector& a) |
458
|
450 { |
|
451 // int field_width = os.precision () + 7; |
|
452 for (int i = 0; i < a.length (); i++) |
|
453 os << " " /* setw (field_width) */ << a.elem (i); |
|
454 return os; |
|
455 } |
|
456 |
3504
|
457 std::istream& |
|
458 operator >> (std::istream& is, ComplexRowVector& a) |
458
|
459 { |
|
460 int len = a.length(); |
|
461 |
|
462 if (len < 1) |
3504
|
463 is.clear (std::ios::badbit); |
458
|
464 else |
|
465 { |
|
466 Complex tmp; |
|
467 for (int i = 0; i < len; i++) |
|
468 { |
|
469 is >> tmp; |
|
470 if (is) |
|
471 a.elem (i) = tmp; |
|
472 else |
|
473 break; |
|
474 } |
|
475 } |
532
|
476 return is; |
458
|
477 } |
|
478 |
1205
|
479 // row vector by column vector -> scalar |
|
480 |
|
481 // row vector by column vector -> scalar |
|
482 |
|
483 Complex |
|
484 operator * (const ComplexRowVector& v, const ColumnVector& a) |
|
485 { |
|
486 ComplexColumnVector tmp (a); |
|
487 return v * tmp; |
|
488 } |
|
489 |
|
490 Complex |
|
491 operator * (const ComplexRowVector& v, const ComplexColumnVector& a) |
|
492 { |
|
493 int len = v.length (); |
2386
|
494 |
|
495 int a_len = a.length (); |
|
496 |
|
497 if (len != a_len) |
1205
|
498 { |
2386
|
499 gripe_nonconformant ("operator *", len, a_len); |
1205
|
500 return 0.0; |
|
501 } |
|
502 |
|
503 Complex retval (0.0, 0.0); |
|
504 |
|
505 for (int i = 0; i < len; i++) |
|
506 retval += v.elem (i) * a.elem (i); |
|
507 |
|
508 return retval; |
|
509 } |
|
510 |
|
511 // other operations |
|
512 |
|
513 ComplexRowVector |
|
514 linspace (const Complex& x1, const Complex& x2, int n) |
|
515 { |
|
516 ComplexRowVector retval; |
|
517 |
|
518 if (n > 0) |
|
519 { |
|
520 retval.resize (n); |
3092
|
521 Complex delta = (x2 - x1) / (n - 1.0); |
1205
|
522 retval.elem (0) = x1; |
|
523 for (int i = 1; i < n-1; i++) |
3092
|
524 retval.elem (i) = x1 + 1.0 * i * delta; |
1205
|
525 retval.elem (n-1) = x2; |
|
526 } |
3322
|
527 else if (n == 1) |
|
528 { |
|
529 if (x1 == x2) |
|
530 { |
|
531 retval.resize (1); |
|
532 retval.elem (0) = x1; |
|
533 } |
|
534 else |
|
535 (*current_liboctave_error_handler) |
|
536 ("linspace: npoints is 1, but x1 != x2"); |
|
537 } |
|
538 else |
|
539 (*current_liboctave_error_handler) |
|
540 ("linspace: npoints must be greater than 0"); |
1205
|
541 |
|
542 return retval; |
|
543 } |
|
544 |
458
|
545 /* |
|
546 ;;; Local Variables: *** |
|
547 ;;; mode: C++ *** |
|
548 ;;; End: *** |
|
549 */ |