5837
|
1 ## Copyright (C) 2000 Kai Habel |
|
2 ## |
|
3 ## This file is part of Octave. |
|
4 ## |
|
5 ## Octave is free software; you can redistribute it and/or modify it |
|
6 ## under the terms of the GNU General Public License as published by |
|
7 ## the Free Software Foundation; either version 2, or (at your option) |
|
8 ## any later version. |
|
9 ## |
|
10 ## Octave is distributed in the hope that it will be useful, but |
|
11 ## WITHOUT ANY WARRANTY; without even the implied warranty of |
|
12 ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
|
13 ## General Public License for more details. |
|
14 ## |
|
15 ## You should have received a copy of the GNU General Public License |
|
16 ## along with Octave; see the file COPYING. If not, write to the Free |
|
17 ## Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA |
|
18 ## 02110-1301, USA. |
|
19 |
|
20 ## -*- texinfo -*- |
|
21 ## @deftypefn {Function File} {@var{x} = } gradient (@var{M}) |
|
22 ## @deftypefnx {Function File} {[@var{x}, @var{y}, @dots{}] = } gradient (@var{M}) |
|
23 ## @deftypefnx {Function File} {[@dots{}] = } gradient (@var{M}, @var{s}) |
|
24 ## @deftypefnx {Function File} {[@dots{}] = } gradient (@var{M}, @var{dx}, @var{dy}, @dots{}) |
|
25 ## |
|
26 ## Calculates the gradient. @code{@var{x} = gradient (@var{M})} |
|
27 ## calculates the one dimensional gradient if @var{M} is a vector. If |
|
28 ## @var{M} is a matrix the gradient is calculated for each row. |
|
29 ## |
|
30 ## @code{[@var{x}, @var{y}] = gradient (@var{M})} calculates the one |
|
31 ## dimensional gradient for each direction if @var{M} if @var{M} is a |
|
32 ## matrix. Additional return arguments can be use for multi-dimensional |
|
33 ## matrices. |
|
34 ## |
|
35 ## Spacing values between two points can be provided by the |
|
36 ## @var{dx}, @var{dy} or @var{h} parameters. If @var{h} is supplied it |
|
37 ## is assumed to be the spacing in all directions. Otherwise, seperate |
|
38 ## values of the spacing can be supplied by the @var{dx}, etc variables. |
|
39 ## A scalar value specifies an equidistant spacing, while a vector value |
|
40 ## can be used to specify a variable spacing. The length must match |
|
41 ## their respective dimension of @var{M}. |
|
42 ## |
|
43 ## At boundary points a linear extrapolation is applied. Interior points |
|
44 ## are calculated with the first approximation of the numerical gradient |
|
45 ## |
|
46 ## @example |
|
47 ## y'(i) = 1/(x(i+1)-x(i-1)) *(y(i-1)-y(i+1)). |
|
48 ## @end example |
|
49 ## |
|
50 ## @end deftypefn |
|
51 |
|
52 ## Author: Kai Habel <kai.habel@gmx.de> |
|
53 ## Modified: David Bateman <dbateman@free.fr> Added NDArray support |
|
54 |
|
55 function [varargout] = gradient (M, varargin) |
|
56 |
5838
|
57 if (nargin < 1) |
5837
|
58 print_usage () |
|
59 endif |
|
60 |
|
61 transposed = false; |
|
62 if (isvector (M)) |
|
63 ## make a column vector |
5838
|
64 transposed = (size (M, 2) == 1); |
5837
|
65 M = M(:)'; |
|
66 endif |
|
67 |
|
68 nd = ndims (M); |
|
69 sz = size (M); |
|
70 if (nargin > 2 && nargin != nd + 1) |
|
71 print_usage () |
|
72 endif |
|
73 |
5838
|
74 d = cell (1, nd); |
5837
|
75 if (nargin == 1) |
|
76 for i=1:nd |
5838
|
77 d{i} = ones (sz(i), 1); |
5837
|
78 endfor |
|
79 elseif (nargin == 2) |
|
80 if (isscalar (varargin{1})) |
5838
|
81 for i = 1:nd |
|
82 d{i} = varargin{1} * ones (sz(i), 1); |
5837
|
83 endfor |
|
84 else |
5838
|
85 for i = 1:nd |
5837
|
86 d{i} = varargin{1}; |
|
87 endfor |
|
88 endif |
|
89 else |
|
90 for i=1:nd |
|
91 if (isscalar (varargin{1})) |
5838
|
92 d{i} = varargin{i} * ones (sz(i), 1); |
5837
|
93 else |
|
94 d{i} = varargin{i}; |
|
95 endif |
|
96 endfor |
|
97 |
|
98 ## Why the hell did matlab decide to swap these two values? |
|
99 tmp = d{1}; |
|
100 d{1} = d{2}; |
|
101 d{2} = tmp; |
|
102 endif |
|
103 |
5838
|
104 for i = 1:max (2, min (nd, nargout)) |
5837
|
105 mr = sz(i); |
5838
|
106 mc = prod ([sz(1:i-1), sz(i+1:nd)]); |
|
107 Y = zeros (size (M), class (M)); |
5837
|
108 |
|
109 if (mr > 1) |
|
110 ## top and bottom boundary |
5838
|
111 Y(1,:) = diff (M(1:2,:)) / d{i}(1); |
|
112 Y(mr,:) = diff (M(mr-1:mr,:)) / d{i}(mr-1); |
5837
|
113 endif |
|
114 |
|
115 if (mr > 2) |
|
116 ## interior points |
5838
|
117 Y(2:mr-1,:) = (M(3:mr,:) .- M(1:mr-2,:)) ... |
|
118 ./ kron (d{i}(1:mr-2) .+ d{i}(2:mr-1), ones (1, mc)); |
5837
|
119 endif |
|
120 varargout{i} = ipermute (Y, [i:nd,1:i-1]); |
|
121 M = permute (M, [2:nd,1]); |
|
122 endfor |
|
123 |
|
124 ## Why the hell did matlab decide to swap these two values? |
|
125 tmp = varargout{1}; |
|
126 varargout{1} = varargout{2}; |
|
127 varargout{2} = tmp; |
|
128 |
|
129 if (transposed) |
|
130 varargout{1} = varargout{1}.'; |
|
131 endif |
|
132 endfunction |