4513
|
1 // N-D Array manipulations. |
4511
|
2 /* |
|
3 |
|
4 Copyright (C) 1996, 1997 John W. Eaton |
|
5 |
|
6 This file is part of Octave. |
|
7 |
|
8 Octave is free software; you can redistribute it and/or modify it |
|
9 under the terms of the GNU General Public License as published by the |
|
10 Free Software Foundation; either version 2, or (at your option) any |
|
11 later version. |
|
12 |
|
13 Octave is distributed in the hope that it will be useful, but WITHOUT |
|
14 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
|
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
|
16 for more details. |
|
17 |
|
18 You should have received a copy of the GNU General Public License |
|
19 along with Octave; see the file COPYING. If not, write to the Free |
|
20 Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. |
|
21 |
|
22 */ |
|
23 |
|
24 #if defined (__GNUG__) && defined (USE_PRAGMA_INTERFACE_IMPLEMENTATION) |
|
25 #pragma implementation |
|
26 #endif |
|
27 |
|
28 #ifdef HAVE_CONFIG_H |
|
29 #include <config.h> |
|
30 #endif |
|
31 |
4634
|
32 #include <cfloat> |
4780
|
33 #include <vector> |
4634
|
34 |
4588
|
35 #include "Array-util.h" |
4513
|
36 #include "dNDArray.h" |
4511
|
37 #include "mx-base.h" |
4773
|
38 #include "f77-fcn.h" |
4513
|
39 #include "lo-error.h" |
4511
|
40 #include "lo-ieee.h" |
4634
|
41 #include "lo-mappers.h" |
4511
|
42 |
4773
|
43 #if defined (HAVE_FFTW3) |
|
44 #include "oct-fftw.h" |
|
45 |
|
46 ComplexNDArray |
|
47 NDArray::fourier (int dim) const |
|
48 { |
|
49 dim_vector dv = dims (); |
|
50 |
|
51 if (dim > dv.length () || dim < 0) |
|
52 return ComplexNDArray (); |
|
53 |
|
54 int stride = 1; |
|
55 int n = dv(dim); |
|
56 |
|
57 for (int i = 0; i < dim; i++) |
|
58 stride *= dv(i); |
|
59 |
|
60 int howmany = numel () / dv (dim); |
|
61 howmany = (stride == 1 ? howmany : (howmany > stride ? stride : howmany)); |
|
62 int nloop = (stride == 1 ? 1 : numel () / dv (dim) / stride); |
|
63 int dist = (stride == 1 ? n : 1); |
|
64 |
|
65 const double *in (fortran_vec ()); |
|
66 ComplexNDArray retval (dv); |
|
67 Complex *out (retval.fortran_vec ()); |
|
68 |
|
69 // Need to be careful here about the distance between fft's |
|
70 for (int k = 0; k < nloop; k++) |
|
71 octave_fftw::fft (in + k * stride * n, out + k * stride * n, |
|
72 n, howmany, stride, dist); |
|
73 |
|
74 return retval; |
|
75 } |
|
76 |
|
77 ComplexNDArray |
4816
|
78 NDArray::ifourier (int dim) const |
4773
|
79 { |
|
80 dim_vector dv = dims (); |
|
81 |
|
82 if (dim > dv.length () || dim < 0) |
|
83 return ComplexNDArray (); |
|
84 |
|
85 int stride = 1; |
|
86 int n = dv(dim); |
|
87 |
|
88 for (int i = 0; i < dim; i++) |
|
89 stride *= dv(i); |
|
90 |
|
91 int howmany = numel () / dv (dim); |
|
92 howmany = (stride == 1 ? howmany : (howmany > stride ? stride : howmany)); |
|
93 int nloop = (stride == 1 ? 1 : numel () / dv (dim) / stride); |
|
94 int dist = (stride == 1 ? n : 1); |
|
95 |
|
96 ComplexNDArray retval (*this); |
|
97 Complex *out (retval.fortran_vec ()); |
|
98 |
|
99 // Need to be careful here about the distance between fft's |
|
100 for (int k = 0; k < nloop; k++) |
|
101 octave_fftw::ifft (out + k * stride * n, out + k * stride * n, |
|
102 n, howmany, stride, dist); |
|
103 |
|
104 return retval; |
|
105 } |
|
106 |
|
107 ComplexNDArray |
|
108 NDArray::fourier2d (void) const |
|
109 { |
|
110 dim_vector dv = dims(); |
|
111 if (dv.length () < 2) |
|
112 return ComplexNDArray (); |
|
113 |
|
114 dim_vector dv2(dv(0), dv(1)); |
|
115 const double *in = fortran_vec (); |
|
116 ComplexNDArray retval (dv); |
|
117 Complex *out = retval.fortran_vec (); |
|
118 int howmany = numel() / dv(0) / dv(1); |
|
119 int dist = dv(0) * dv(1); |
|
120 |
|
121 for (int i=0; i < howmany; i++) |
|
122 octave_fftw::fftNd (in + i*dist, out + i*dist, 2, dv2); |
|
123 |
|
124 return retval; |
|
125 } |
|
126 |
|
127 ComplexNDArray |
|
128 NDArray::ifourier2d (void) const |
|
129 { |
|
130 dim_vector dv = dims(); |
|
131 if (dv.length () < 2) |
|
132 return ComplexNDArray (); |
|
133 |
|
134 dim_vector dv2(dv(0), dv(1)); |
|
135 ComplexNDArray retval (*this); |
|
136 Complex *out = retval.fortran_vec (); |
|
137 int howmany = numel() / dv(0) / dv(1); |
|
138 int dist = dv(0) * dv(1); |
|
139 |
|
140 for (int i=0; i < howmany; i++) |
|
141 octave_fftw::ifftNd (out + i*dist, out + i*dist, 2, dv2); |
|
142 |
|
143 return retval; |
|
144 } |
|
145 |
|
146 ComplexNDArray |
|
147 NDArray::fourierNd (void) const |
|
148 { |
|
149 dim_vector dv = dims (); |
|
150 int rank = dv.length (); |
|
151 |
|
152 const double *in (fortran_vec ()); |
|
153 ComplexNDArray retval (dv); |
|
154 Complex *out (retval.fortran_vec ()); |
|
155 |
|
156 octave_fftw::fftNd (in, out, rank, dv); |
|
157 |
|
158 return retval; |
|
159 } |
|
160 |
|
161 ComplexNDArray |
|
162 NDArray::ifourierNd (void) const |
|
163 { |
|
164 dim_vector dv = dims (); |
|
165 int rank = dv.length (); |
|
166 |
|
167 ComplexNDArray tmp (*this); |
|
168 Complex *in (tmp.fortran_vec ()); |
|
169 ComplexNDArray retval (dv); |
|
170 Complex *out (retval.fortran_vec ()); |
|
171 |
|
172 octave_fftw::ifftNd (in, out, rank, dv); |
|
173 |
|
174 return retval; |
|
175 } |
|
176 |
|
177 #else |
|
178 |
|
179 extern "C" |
|
180 { |
|
181 // Note that the original complex fft routines were not written for |
|
182 // double complex arguments. They have been modified by adding an |
|
183 // implicit double precision (a-h,o-z) statement at the beginning of |
|
184 // each subroutine. |
|
185 |
|
186 F77_RET_T |
|
187 F77_FUNC (cffti, CFFTI) (const int&, Complex*); |
|
188 |
|
189 F77_RET_T |
|
190 F77_FUNC (cfftf, CFFTF) (const int&, Complex*, Complex*); |
|
191 |
|
192 F77_RET_T |
|
193 F77_FUNC (cfftb, CFFTB) (const int&, Complex*, Complex*); |
|
194 } |
|
195 |
|
196 ComplexNDArray |
|
197 NDArray::fourier (int dim) const |
|
198 { |
|
199 dim_vector dv = dims (); |
|
200 |
|
201 if (dim > dv.length () || dim < 0) |
|
202 return ComplexNDArray (); |
|
203 |
|
204 ComplexNDArray retval (dv); |
|
205 int npts = dv(dim); |
|
206 int nn = 4*npts+15; |
|
207 Array<Complex> wsave (nn); |
|
208 Complex *pwsave = wsave.fortran_vec (); |
|
209 |
|
210 OCTAVE_LOCAL_BUFFER (Complex, tmp, npts); |
|
211 |
|
212 int stride = 1; |
|
213 |
|
214 for (int i = 0; i < dim; i++) |
|
215 stride *= dv(i); |
|
216 |
|
217 int howmany = numel () / npts; |
|
218 howmany = (stride == 1 ? howmany : (howmany > stride ? stride : howmany)); |
|
219 int nloop = (stride == 1 ? 1 : numel () / npts / stride); |
|
220 int dist = (stride == 1 ? npts : 1); |
|
221 |
|
222 F77_FUNC (cffti, CFFTI) (npts, pwsave); |
|
223 |
|
224 for (int k = 0; k < nloop; k++) |
|
225 { |
|
226 for (int j = 0; j < howmany; j++) |
|
227 { |
|
228 OCTAVE_QUIT; |
|
229 |
|
230 for (int i = 0; i < npts; i++) |
|
231 tmp[i] = elem((i + k*npts)*stride + j*dist); |
|
232 |
|
233 F77_FUNC (cfftf, CFFTF) (npts, tmp, pwsave); |
|
234 |
|
235 for (int i = 0; i < npts; i++) |
|
236 retval ((i + k*npts)*stride + j*dist) = tmp[i]; |
|
237 } |
|
238 } |
|
239 |
|
240 return retval; |
|
241 } |
|
242 |
|
243 ComplexNDArray |
|
244 NDArray::ifourier (int dim) const |
|
245 { |
|
246 dim_vector dv = dims (); |
|
247 |
|
248 if (dim > dv.length () || dim < 0) |
|
249 return ComplexNDArray (); |
|
250 |
|
251 ComplexNDArray retval (dv); |
|
252 int npts = dv(dim); |
|
253 int nn = 4*npts+15; |
|
254 Array<Complex> wsave (nn); |
|
255 Complex *pwsave = wsave.fortran_vec (); |
|
256 |
|
257 OCTAVE_LOCAL_BUFFER (Complex, tmp, npts); |
|
258 |
|
259 int stride = 1; |
|
260 |
|
261 for (int i = 0; i < dim; i++) |
|
262 stride *= dv(i); |
|
263 |
|
264 int howmany = numel () / npts; |
|
265 howmany = (stride == 1 ? howmany : (howmany > stride ? stride : howmany)); |
|
266 int nloop = (stride == 1 ? 1 : numel () / npts / stride); |
|
267 int dist = (stride == 1 ? npts : 1); |
|
268 |
|
269 F77_FUNC (cffti, CFFTI) (npts, pwsave); |
|
270 |
|
271 for (int k = 0; k < nloop; k++) |
|
272 { |
|
273 for (int j = 0; j < howmany; j++) |
|
274 { |
|
275 OCTAVE_QUIT; |
|
276 |
|
277 for (int i = 0; i < npts; i++) |
|
278 tmp[i] = elem((i + k*npts)*stride + j*dist); |
|
279 |
|
280 F77_FUNC (cfftb, CFFTB) (npts, tmp, pwsave); |
|
281 |
|
282 for (int i = 0; i < npts; i++) |
|
283 retval ((i + k*npts)*stride + j*dist) = tmp[i] / |
|
284 static_cast<double> (npts); |
|
285 } |
|
286 } |
|
287 |
|
288 return retval; |
|
289 } |
|
290 |
|
291 ComplexNDArray |
|
292 NDArray::fourier2d (void) const |
|
293 { |
|
294 dim_vector dv = dims(); |
|
295 dim_vector dv2 (dv(0), dv(1)); |
|
296 int rank = 2; |
|
297 ComplexNDArray retval (*this); |
|
298 int stride = 1; |
|
299 |
|
300 for (int i = 0; i < rank; i++) |
|
301 { |
|
302 int npts = dv2(i); |
|
303 int nn = 4*npts+15; |
|
304 Array<Complex> wsave (nn); |
|
305 Complex *pwsave = wsave.fortran_vec (); |
|
306 Array<Complex> row (npts); |
|
307 Complex *prow = row.fortran_vec (); |
|
308 |
|
309 int howmany = numel () / npts; |
|
310 howmany = (stride == 1 ? howmany : |
|
311 (howmany > stride ? stride : howmany)); |
|
312 int nloop = (stride == 1 ? 1 : numel () / npts / stride); |
|
313 int dist = (stride == 1 ? npts : 1); |
|
314 |
|
315 F77_FUNC (cffti, CFFTI) (npts, pwsave); |
|
316 |
|
317 for (int k = 0; k < nloop; k++) |
|
318 { |
|
319 for (int j = 0; j < howmany; j++) |
|
320 { |
|
321 OCTAVE_QUIT; |
|
322 |
|
323 for (int l = 0; l < npts; l++) |
|
324 prow[l] = retval ((l + k*npts)*stride + j*dist); |
|
325 |
|
326 F77_FUNC (cfftf, CFFTF) (npts, prow, pwsave); |
|
327 |
|
328 for (int l = 0; l < npts; l++) |
|
329 retval ((l + k*npts)*stride + j*dist) = prow[l]; |
|
330 } |
|
331 } |
|
332 |
|
333 stride *= dv2(i); |
|
334 } |
|
335 |
|
336 return retval; |
|
337 } |
|
338 |
|
339 ComplexNDArray |
|
340 NDArray::ifourier2d (void) const |
|
341 { |
|
342 dim_vector dv = dims(); |
|
343 dim_vector dv2 (dv(0), dv(1)); |
|
344 int rank = 2; |
|
345 ComplexNDArray retval (*this); |
|
346 int stride = 1; |
|
347 |
|
348 for (int i = 0; i < rank; i++) |
|
349 { |
|
350 int npts = dv2(i); |
|
351 int nn = 4*npts+15; |
|
352 Array<Complex> wsave (nn); |
|
353 Complex *pwsave = wsave.fortran_vec (); |
|
354 Array<Complex> row (npts); |
|
355 Complex *prow = row.fortran_vec (); |
|
356 |
|
357 int howmany = numel () / npts; |
|
358 howmany = (stride == 1 ? howmany : |
|
359 (howmany > stride ? stride : howmany)); |
|
360 int nloop = (stride == 1 ? 1 : numel () / npts / stride); |
|
361 int dist = (stride == 1 ? npts : 1); |
|
362 |
|
363 F77_FUNC (cffti, CFFTI) (npts, pwsave); |
|
364 |
|
365 for (int k = 0; k < nloop; k++) |
|
366 { |
|
367 for (int j = 0; j < howmany; j++) |
|
368 { |
|
369 OCTAVE_QUIT; |
|
370 |
|
371 for (int l = 0; l < npts; l++) |
|
372 prow[l] = retval ((l + k*npts)*stride + j*dist); |
|
373 |
|
374 F77_FUNC (cfftb, CFFTB) (npts, prow, pwsave); |
|
375 |
|
376 for (int l = 0; l < npts; l++) |
|
377 retval ((l + k*npts)*stride + j*dist) = prow[l] / |
|
378 static_cast<double> (npts); |
|
379 } |
|
380 } |
|
381 |
|
382 stride *= dv2(i); |
|
383 } |
|
384 |
|
385 return retval; |
|
386 } |
|
387 |
|
388 ComplexNDArray |
|
389 NDArray::fourierNd (void) const |
|
390 { |
|
391 dim_vector dv = dims (); |
|
392 int rank = dv.length (); |
|
393 ComplexNDArray retval (*this); |
|
394 int stride = 1; |
|
395 |
|
396 for (int i = 0; i < rank; i++) |
|
397 { |
|
398 int npts = dv(i); |
|
399 int nn = 4*npts+15; |
|
400 Array<Complex> wsave (nn); |
|
401 Complex *pwsave = wsave.fortran_vec (); |
|
402 Array<Complex> row (npts); |
|
403 Complex *prow = row.fortran_vec (); |
|
404 |
|
405 int howmany = numel () / npts; |
|
406 howmany = (stride == 1 ? howmany : |
|
407 (howmany > stride ? stride : howmany)); |
|
408 int nloop = (stride == 1 ? 1 : numel () / npts / stride); |
|
409 int dist = (stride == 1 ? npts : 1); |
|
410 |
|
411 F77_FUNC (cffti, CFFTI) (npts, pwsave); |
|
412 |
|
413 for (int k = 0; k < nloop; k++) |
|
414 { |
|
415 for (int j = 0; j < howmany; j++) |
|
416 { |
|
417 OCTAVE_QUIT; |
|
418 |
|
419 for (int l = 0; l < npts; l++) |
|
420 prow[l] = retval ((l + k*npts)*stride + j*dist); |
|
421 |
|
422 F77_FUNC (cfftf, CFFTF) (npts, prow, pwsave); |
|
423 |
|
424 for (int l = 0; l < npts; l++) |
|
425 retval ((l + k*npts)*stride + j*dist) = prow[l]; |
|
426 } |
|
427 } |
|
428 |
|
429 stride *= dv(i); |
|
430 } |
|
431 |
|
432 return retval; |
|
433 } |
|
434 |
|
435 ComplexNDArray |
|
436 NDArray::ifourierNd (void) const |
|
437 { |
|
438 dim_vector dv = dims (); |
|
439 int rank = dv.length (); |
|
440 ComplexNDArray retval (*this); |
|
441 int stride = 1; |
|
442 |
|
443 for (int i = 0; i < rank; i++) |
|
444 { |
|
445 int npts = dv(i); |
|
446 int nn = 4*npts+15; |
|
447 Array<Complex> wsave (nn); |
|
448 Complex *pwsave = wsave.fortran_vec (); |
|
449 Array<Complex> row (npts); |
|
450 Complex *prow = row.fortran_vec (); |
|
451 |
|
452 int howmany = numel () / npts; |
|
453 howmany = (stride == 1 ? howmany : |
|
454 (howmany > stride ? stride : howmany)); |
|
455 int nloop = (stride == 1 ? 1 : numel () / npts / stride); |
|
456 int dist = (stride == 1 ? npts : 1); |
|
457 |
|
458 F77_FUNC (cffti, CFFTI) (npts, pwsave); |
|
459 |
|
460 for (int k = 0; k < nloop; k++) |
|
461 { |
|
462 for (int j = 0; j < howmany; j++) |
|
463 { |
|
464 OCTAVE_QUIT; |
|
465 |
|
466 for (int l = 0; l < npts; l++) |
|
467 prow[l] = retval ((l + k*npts)*stride + j*dist); |
|
468 |
|
469 F77_FUNC (cfftb, CFFTB) (npts, prow, pwsave); |
|
470 |
|
471 for (int l = 0; l < npts; l++) |
|
472 retval ((l + k*npts)*stride + j*dist) = prow[l] / |
|
473 static_cast<double> (npts); |
|
474 } |
|
475 } |
|
476 |
|
477 stride *= dv(i); |
|
478 } |
|
479 |
|
480 return retval; |
|
481 } |
|
482 |
|
483 #endif |
|
484 |
4543
|
485 NDArray::NDArray (const boolNDArray& a) |
|
486 : MArrayN<double> (a.dims ()) |
|
487 { |
|
488 for (int i = 0; i < a.length (); i++) |
|
489 elem (i) = a.elem (i); |
|
490 } |
|
491 |
|
492 NDArray::NDArray (const charNDArray& a) |
|
493 : MArrayN<double> (a.dims ()) |
|
494 { |
|
495 for (int i = 0; i < a.length (); i++) |
|
496 elem (i) = a.elem (i); |
|
497 } |
|
498 |
|
499 // unary operations |
|
500 |
|
501 boolNDArray |
|
502 NDArray::operator ! (void) const |
|
503 { |
|
504 boolNDArray b (dims ()); |
|
505 |
|
506 for (int i = 0; i < length (); i++) |
|
507 b.elem (i) = ! elem (i); |
|
508 |
|
509 return b; |
|
510 } |
|
511 |
4634
|
512 bool |
|
513 NDArray::any_element_is_negative (bool neg_zero) const |
|
514 { |
|
515 int nel = nelem (); |
|
516 |
|
517 if (neg_zero) |
|
518 { |
|
519 for (int i = 0; i < nel; i++) |
|
520 if (lo_ieee_signbit (elem (i))) |
|
521 return true; |
|
522 } |
|
523 else |
|
524 { |
|
525 for (int i = 0; i < nel; i++) |
|
526 if (elem (i) < 0) |
|
527 return true; |
|
528 } |
|
529 |
|
530 return false; |
|
531 } |
|
532 |
|
533 |
|
534 bool |
|
535 NDArray::any_element_is_inf_or_nan (void) const |
|
536 { |
|
537 int nel = nelem (); |
|
538 |
|
539 for (int i = 0; i < nel; i++) |
|
540 { |
|
541 double val = elem (i); |
|
542 if (xisinf (val) || xisnan (val)) |
|
543 return true; |
|
544 } |
|
545 |
|
546 return false; |
|
547 } |
|
548 |
|
549 bool |
|
550 NDArray::all_elements_are_int_or_inf_or_nan (void) const |
|
551 { |
|
552 int nel = nelem (); |
|
553 |
|
554 for (int i = 0; i < nel; i++) |
|
555 { |
|
556 double val = elem (i); |
|
557 if (xisnan (val) || D_NINT (val) == val) |
|
558 continue; |
|
559 else |
|
560 return false; |
|
561 } |
|
562 |
|
563 return true; |
|
564 } |
|
565 |
|
566 // Return nonzero if any element of M is not an integer. Also extract |
|
567 // the largest and smallest values and return them in MAX_VAL and MIN_VAL. |
|
568 |
|
569 bool |
|
570 NDArray::all_integers (double& max_val, double& min_val) const |
|
571 { |
|
572 int nel = nelem (); |
|
573 |
|
574 if (nel > 0) |
|
575 { |
|
576 max_val = elem (0); |
|
577 min_val = elem (0); |
|
578 } |
|
579 else |
|
580 return false; |
|
581 |
|
582 for (int i = 0; i < nel; i++) |
|
583 { |
|
584 double val = elem (i); |
|
585 |
|
586 if (val > max_val) |
|
587 max_val = val; |
|
588 |
|
589 if (val < min_val) |
|
590 min_val = val; |
|
591 |
|
592 if (D_NINT (val) != val) |
|
593 return false; |
|
594 } |
|
595 |
|
596 return true; |
|
597 } |
|
598 |
|
599 bool |
|
600 NDArray::too_large_for_float (void) const |
|
601 { |
|
602 int nel = nelem (); |
|
603 |
|
604 for (int i = 0; i < nel; i++) |
|
605 { |
|
606 double val = elem (i); |
|
607 |
|
608 if (val > FLT_MAX || val < FLT_MIN) |
|
609 return true; |
|
610 } |
|
611 |
|
612 return false; |
|
613 } |
|
614 |
4513
|
615 // XXX FIXME XXX -- this is not quite the right thing. |
|
616 |
4556
|
617 boolNDArray |
4513
|
618 NDArray::all (int dim) const |
|
619 { |
4569
|
620 MX_ND_ANY_ALL_REDUCTION (MX_ND_ALL_EVAL (MX_ND_ALL_EXPR), true); |
4513
|
621 } |
|
622 |
4556
|
623 boolNDArray |
4513
|
624 NDArray::any (int dim) const |
|
625 { |
4569
|
626 MX_ND_ANY_ALL_REDUCTION (MX_ND_ANY_EVAL (MX_ND_ANY_EXPR), false); |
|
627 } |
|
628 |
4584
|
629 NDArray |
4569
|
630 NDArray::cumprod (int dim) const |
|
631 { |
4584
|
632 MX_ND_CUMULATIVE_OP (NDArray, double, 1, *); |
4569
|
633 } |
|
634 |
4584
|
635 NDArray |
4569
|
636 NDArray::cumsum (int dim) const |
|
637 { |
4584
|
638 MX_ND_CUMULATIVE_OP (NDArray, double, 0, +); |
4513
|
639 } |
|
640 |
4569
|
641 NDArray |
|
642 NDArray::prod (int dim) const |
|
643 { |
|
644 MX_ND_REAL_OP_REDUCTION (*= elem (iter_idx), 1); |
|
645 } |
|
646 |
|
647 NDArray |
|
648 NDArray::sumsq (int dim) const |
|
649 { |
|
650 MX_ND_REAL_OP_REDUCTION (+= std::pow (elem (iter_idx), 2), 0); |
|
651 } |
|
652 |
|
653 NDArray |
|
654 NDArray::sum (int dim) const |
|
655 { |
|
656 MX_ND_REAL_OP_REDUCTION (+= elem (iter_idx), 0); |
|
657 } |
|
658 |
4806
|
659 int |
|
660 NDArray::cat (const NDArray& ra_arg, int dim, int iidx, int move) |
4758
|
661 { |
4806
|
662 return ::cat_ra (*this, ra_arg, dim, iidx, move); |
4758
|
663 } |
|
664 |
4634
|
665 NDArray |
|
666 real (const ComplexNDArray& a) |
|
667 { |
|
668 int a_len = a.length (); |
|
669 NDArray retval; |
|
670 if (a_len > 0) |
|
671 retval = NDArray (mx_inline_real_dup (a.data (), a_len), a.dims ()); |
|
672 return retval; |
|
673 } |
|
674 |
|
675 NDArray |
|
676 imag (const ComplexNDArray& a) |
|
677 { |
|
678 int a_len = a.length (); |
|
679 NDArray retval; |
|
680 if (a_len > 0) |
|
681 retval = NDArray (mx_inline_imag_dup (a.data (), a_len), a.dims ()); |
|
682 return retval; |
|
683 } |
|
684 |
|
685 NDArray |
4569
|
686 NDArray::abs (void) const |
|
687 { |
4634
|
688 NDArray retval (dims ()); |
4569
|
689 |
4634
|
690 int nel = nelem (); |
|
691 |
|
692 for (int i = 0; i < nel; i++) |
|
693 retval(i) = fabs (elem (i)); |
4569
|
694 |
|
695 return retval; |
|
696 } |
|
697 |
4532
|
698 Matrix |
|
699 NDArray::matrix_value (void) const |
|
700 { |
|
701 Matrix retval; |
|
702 |
|
703 int nd = ndims (); |
|
704 |
|
705 switch (nd) |
|
706 { |
|
707 case 1: |
|
708 retval = Matrix (Array2<double> (*this, dimensions(0), 1)); |
|
709 break; |
|
710 |
|
711 case 2: |
|
712 retval = Matrix (Array2<double> (*this, dimensions(0), dimensions(1))); |
|
713 break; |
|
714 |
|
715 default: |
|
716 (*current_liboctave_error_handler) |
4770
|
717 ("invalid conversion of NDArray to Matrix"); |
4532
|
718 break; |
|
719 } |
|
720 |
|
721 return retval; |
|
722 } |
|
723 |
|
724 void |
|
725 NDArray::increment_index (Array<int>& ra_idx, |
|
726 const dim_vector& dimensions, |
|
727 int start_dimension) |
|
728 { |
|
729 ::increment_index (ra_idx, dimensions, start_dimension); |
|
730 } |
|
731 |
4556
|
732 int |
|
733 NDArray::compute_index (Array<int>& ra_idx, |
|
734 const dim_vector& dimensions) |
|
735 { |
|
736 return ::compute_index (ra_idx, dimensions); |
|
737 } |
|
738 |
4687
|
739 // This contains no information on the array structure !!! |
|
740 std::ostream& |
|
741 operator << (std::ostream& os, const NDArray& a) |
|
742 { |
|
743 int nel = a.nelem (); |
|
744 |
|
745 for (int i = 0; i < nel; i++) |
|
746 { |
|
747 os << " "; |
|
748 octave_write_double (os, a.elem (i)); |
|
749 os << "\n"; |
|
750 } |
|
751 return os; |
|
752 } |
|
753 |
|
754 std::istream& |
|
755 operator >> (std::istream& is, NDArray& a) |
|
756 { |
|
757 int nel = a.nelem (); |
|
758 |
|
759 if (nel < 1 ) |
|
760 is.clear (std::ios::badbit); |
|
761 else |
|
762 { |
|
763 double tmp; |
|
764 for (int i = 0; i < nel; i++) |
|
765 { |
|
766 tmp = octave_read_double (is); |
|
767 if (is) |
|
768 a.elem (i) = tmp; |
|
769 else |
|
770 goto done; |
|
771 } |
|
772 } |
|
773 |
|
774 done: |
|
775 |
|
776 return is; |
|
777 } |
|
778 |
4543
|
779 NDS_CMP_OPS(NDArray, , double, ) |
|
780 NDS_BOOL_OPS(NDArray, double, 0.0) |
|
781 |
|
782 SND_CMP_OPS(double, , NDArray, ) |
|
783 SND_BOOL_OPS(double, NDArray, 0.0) |
|
784 |
|
785 NDND_CMP_OPS(NDArray, , NDArray, ) |
|
786 NDND_BOOL_OPS(NDArray, NDArray, 0.0) |
|
787 |
4513
|
788 /* |
|
789 ;;; Local Variables: *** |
|
790 ;;; mode: C++ *** |
|
791 ;;; End: *** |
|
792 */ |