3294
|
1 @c Copyright (C) 1996, 1997 John W. Eaton |
|
2 @c This is part of the Octave manual. |
|
3 @c For copying conditions, see the file gpl.texi. |
|
4 |
4167
|
5 @node Polynomial Manipulations |
3294
|
6 @chapter Polynomial Manipulations |
|
7 |
|
8 In Octave, a polynomial is represented by its coefficients (arranged |
|
9 in descending order). For example, a vector |
|
10 @iftex |
|
11 @end iftex |
|
12 @ifinfo |
|
13 $c$ |
|
14 @end ifinfo |
|
15 of length |
|
16 @iftex |
|
17 @tex |
|
18 $N+1$ |
|
19 @end tex |
|
20 @ifinfo |
|
21 @var{N+1} |
|
22 @end ifinfo |
|
23 corresponds to the following polynomial of order |
|
24 @iftex |
|
25 @tex |
|
26 $N$ |
|
27 $$ |
|
28 p (x) = c_1 x^N + ... + c_N x + c_{N+1}. |
|
29 $$ |
|
30 @end tex |
|
31 @end iftex |
|
32 @ifinfo |
|
33 @var{N} |
|
34 |
|
35 @example |
|
36 p(x) = @var{c}(1) x^@var{N} + ... + @var{c}(@var{N}) x + @var{c}(@var{N}+1). |
|
37 @end example |
|
38 @end ifinfo |
|
39 |
3368
|
40 @DOCSTRING(compan) |
3294
|
41 |
3368
|
42 @DOCSTRING(conv) |
3294
|
43 |
3368
|
44 @DOCSTRING(deconv) |
3294
|
45 |
3368
|
46 @DOCSTRING(poly) |
3294
|
47 |
3368
|
48 @DOCSTRING(polyderiv) |
3294
|
49 |
6502
|
50 @DOCSTRING(polyder) |
|
51 |
3368
|
52 @DOCSTRING(polyfit) |
3294
|
53 |
6502
|
54 @DOCSTRING(polygcd) |
|
55 |
3368
|
56 @DOCSTRING(polyinteg) |
3294
|
57 |
3368
|
58 @DOCSTRING(polyreduce) |
3294
|
59 |
3368
|
60 @DOCSTRING(polyval) |
3294
|
61 |
3368
|
62 @DOCSTRING(polyvalm) |
3294
|
63 |
3368
|
64 @DOCSTRING(residue) |
3294
|
65 |
3368
|
66 @DOCSTRING(roots) |
3428
|
67 |
|
68 @DOCSTRING(polyout) |
6502
|
69 |
|
70 @DOCSTRING(ppval) |
|
71 |
|
72 @DOCSTRING(mkpp) |
|
73 |
|
74 @DOCSTRING(unmkpp) |