7017
|
1 ## Copyright (C) 2000, 2006, 2007 Paul Kienzle |
5824
|
2 ## |
|
3 ## This file is part of Octave. |
|
4 ## |
|
5 ## Octave is free software; you can redistribute it and/or modify it |
|
6 ## under the terms of the GNU General Public License as published by |
7016
|
7 ## the Free Software Foundation; either version 3 of the License, or (at |
|
8 ## your option) any later version. |
5824
|
9 ## |
|
10 ## Octave is distributed in the hope that it will be useful, but |
|
11 ## WITHOUT ANY WARRANTY; without even the implied warranty of |
|
12 ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
|
13 ## General Public License for more details. |
|
14 ## |
|
15 ## You should have received a copy of the GNU General Public License |
7016
|
16 ## along with Octave; see the file COPYING. If not, see |
|
17 ## <http://www.gnu.org/licenses/>. |
5824
|
18 |
|
19 ## -*- texinfo -*- |
|
20 ## @deftypefn {Function File} {@var{pp} = } mkpp (@var{x}, @var{p}) |
|
21 ## @deftypefnx {Function File} {@var{pp} = } mkpp (@var{x}, @var{p}, @var{d}) |
|
22 ## |
|
23 ## Construct a piece-wise polynomial structure from sample points |
|
24 ## @var{x} and coefficients @var{p}. The ith row of @var{p}, |
|
25 ## @code{@var{p} (@var{i},:)}, contains the coefficients for the polynomial |
|
26 ## over the @var{i}-th interval, ordered from highest to |
|
27 ## lowest. There must be one row for each interval in @var{x}, so |
|
28 ## @code{rows (@var{p}) == length (@var{x}) - 1}. |
|
29 ## |
|
30 ## You can concatenate multiple polynomials of the same order over the |
|
31 ## same set of intervals using @code{@var{p} = [ @var{p1}; @var{p2}; |
|
32 ## @dots{}; @var{pd} ]}. In this case, @code{rows (@var{p}) == @var{d} |
|
33 ## * (length (@var{x}) - 1)}. |
|
34 ## |
|
35 ## @var{d} specifies the shape of the matrix @var{p} for all except the |
|
36 ## last dimension. If @var{d} is not specified it will be computed as |
6248
|
37 ## @code{round (rows (@var{p}) / (length (@var{x}) - 1))} instead. |
5824
|
38 ## |
|
39 ## @seealso{unmkpp, ppval, spline} |
|
40 ## @end deftypefn |
|
41 |
|
42 function pp = mkpp (x, P, d) |
|
43 if (nargin < 2 || nargin > 3) |
6046
|
44 print_usage (); |
5824
|
45 endif |
|
46 pp.x = x(:); |
|
47 pp.P = P; |
|
48 pp.n = length (x) - 1; |
|
49 pp.k = columns (P); |
|
50 if (nargin < 3) |
|
51 d = round (rows (P) / pp.n); |
|
52 endif |
|
53 pp.d = d; |
6721
|
54 if (pp.n * prod (d) != rows (P)) |
5824
|
55 error ("mkpp: num intervals in x doesn't match num polynomials in P"); |
|
56 endif |
|
57 endfunction |
|
58 |
|
59 %!demo # linear interpolation |
|
60 %! x=linspace(0,pi,5)'; |
|
61 %! t=[sin(x),cos(x)]; |
|
62 %! m=diff(t)./(x(2)-x(1)); |
|
63 %! b=t(1:4,:); |
|
64 %! pp = mkpp(x, [m(:),b(:)]); |
|
65 %! xi=linspace(0,pi,50); |
6746
|
66 %! plot(x,t,"x",xi,ppval(pp,xi)); |
|
67 %! legend("control","interp"); |