4513
|
1 // N-D Array manipulations. |
4511
|
2 /* |
|
3 |
|
4 Copyright (C) 1996, 1997 John W. Eaton |
|
5 |
|
6 This file is part of Octave. |
|
7 |
|
8 Octave is free software; you can redistribute it and/or modify it |
|
9 under the terms of the GNU General Public License as published by the |
|
10 Free Software Foundation; either version 2, or (at your option) any |
|
11 later version. |
|
12 |
|
13 Octave is distributed in the hope that it will be useful, but WITHOUT |
|
14 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
|
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
|
16 for more details. |
|
17 |
|
18 You should have received a copy of the GNU General Public License |
|
19 along with Octave; see the file COPYING. If not, write to the Free |
|
20 Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. |
|
21 |
|
22 */ |
|
23 |
|
24 #if defined (__GNUG__) && defined (USE_PRAGMA_INTERFACE_IMPLEMENTATION) |
|
25 #pragma implementation |
|
26 #endif |
|
27 |
|
28 #ifdef HAVE_CONFIG_H |
|
29 #include <config.h> |
|
30 #endif |
|
31 |
4634
|
32 #include <cfloat> |
4780
|
33 #include <vector> |
4634
|
34 |
4588
|
35 #include "Array-util.h" |
4513
|
36 #include "dNDArray.h" |
4511
|
37 #include "mx-base.h" |
4773
|
38 #include "f77-fcn.h" |
4513
|
39 #include "lo-error.h" |
4511
|
40 #include "lo-ieee.h" |
4634
|
41 #include "lo-mappers.h" |
4511
|
42 |
4773
|
43 #if defined (HAVE_FFTW3) |
|
44 #include "oct-fftw.h" |
|
45 |
|
46 ComplexNDArray |
|
47 NDArray::fourier (int dim) const |
|
48 { |
|
49 dim_vector dv = dims (); |
|
50 |
|
51 if (dim > dv.length () || dim < 0) |
|
52 return ComplexNDArray (); |
|
53 |
|
54 int stride = 1; |
|
55 int n = dv(dim); |
|
56 |
|
57 for (int i = 0; i < dim; i++) |
|
58 stride *= dv(i); |
|
59 |
|
60 int howmany = numel () / dv (dim); |
|
61 howmany = (stride == 1 ? howmany : (howmany > stride ? stride : howmany)); |
|
62 int nloop = (stride == 1 ? 1 : numel () / dv (dim) / stride); |
|
63 int dist = (stride == 1 ? n : 1); |
|
64 |
|
65 const double *in (fortran_vec ()); |
|
66 ComplexNDArray retval (dv); |
|
67 Complex *out (retval.fortran_vec ()); |
|
68 |
|
69 // Need to be careful here about the distance between fft's |
|
70 for (int k = 0; k < nloop; k++) |
|
71 octave_fftw::fft (in + k * stride * n, out + k * stride * n, |
|
72 n, howmany, stride, dist); |
|
73 |
|
74 return retval; |
|
75 } |
|
76 |
|
77 ComplexNDArray |
4816
|
78 NDArray::ifourier (int dim) const |
4773
|
79 { |
|
80 dim_vector dv = dims (); |
|
81 |
|
82 if (dim > dv.length () || dim < 0) |
|
83 return ComplexNDArray (); |
|
84 |
|
85 int stride = 1; |
|
86 int n = dv(dim); |
|
87 |
|
88 for (int i = 0; i < dim; i++) |
|
89 stride *= dv(i); |
|
90 |
|
91 int howmany = numel () / dv (dim); |
|
92 howmany = (stride == 1 ? howmany : (howmany > stride ? stride : howmany)); |
|
93 int nloop = (stride == 1 ? 1 : numel () / dv (dim) / stride); |
|
94 int dist = (stride == 1 ? n : 1); |
|
95 |
|
96 ComplexNDArray retval (*this); |
|
97 Complex *out (retval.fortran_vec ()); |
|
98 |
|
99 // Need to be careful here about the distance between fft's |
|
100 for (int k = 0; k < nloop; k++) |
|
101 octave_fftw::ifft (out + k * stride * n, out + k * stride * n, |
|
102 n, howmany, stride, dist); |
|
103 |
|
104 return retval; |
|
105 } |
|
106 |
|
107 ComplexNDArray |
|
108 NDArray::fourier2d (void) const |
|
109 { |
|
110 dim_vector dv = dims(); |
|
111 if (dv.length () < 2) |
|
112 return ComplexNDArray (); |
|
113 |
|
114 dim_vector dv2(dv(0), dv(1)); |
|
115 const double *in = fortran_vec (); |
|
116 ComplexNDArray retval (dv); |
|
117 Complex *out = retval.fortran_vec (); |
|
118 int howmany = numel() / dv(0) / dv(1); |
|
119 int dist = dv(0) * dv(1); |
|
120 |
|
121 for (int i=0; i < howmany; i++) |
|
122 octave_fftw::fftNd (in + i*dist, out + i*dist, 2, dv2); |
|
123 |
|
124 return retval; |
|
125 } |
|
126 |
|
127 ComplexNDArray |
|
128 NDArray::ifourier2d (void) const |
|
129 { |
|
130 dim_vector dv = dims(); |
|
131 if (dv.length () < 2) |
|
132 return ComplexNDArray (); |
|
133 |
|
134 dim_vector dv2(dv(0), dv(1)); |
|
135 ComplexNDArray retval (*this); |
|
136 Complex *out = retval.fortran_vec (); |
|
137 int howmany = numel() / dv(0) / dv(1); |
|
138 int dist = dv(0) * dv(1); |
|
139 |
|
140 for (int i=0; i < howmany; i++) |
|
141 octave_fftw::ifftNd (out + i*dist, out + i*dist, 2, dv2); |
|
142 |
|
143 return retval; |
|
144 } |
|
145 |
|
146 ComplexNDArray |
|
147 NDArray::fourierNd (void) const |
|
148 { |
|
149 dim_vector dv = dims (); |
|
150 int rank = dv.length (); |
|
151 |
|
152 const double *in (fortran_vec ()); |
|
153 ComplexNDArray retval (dv); |
|
154 Complex *out (retval.fortran_vec ()); |
|
155 |
|
156 octave_fftw::fftNd (in, out, rank, dv); |
|
157 |
|
158 return retval; |
|
159 } |
|
160 |
|
161 ComplexNDArray |
|
162 NDArray::ifourierNd (void) const |
|
163 { |
|
164 dim_vector dv = dims (); |
|
165 int rank = dv.length (); |
|
166 |
|
167 ComplexNDArray tmp (*this); |
|
168 Complex *in (tmp.fortran_vec ()); |
|
169 ComplexNDArray retval (dv); |
|
170 Complex *out (retval.fortran_vec ()); |
|
171 |
|
172 octave_fftw::ifftNd (in, out, rank, dv); |
|
173 |
|
174 return retval; |
|
175 } |
|
176 |
|
177 #else |
|
178 |
|
179 extern "C" |
|
180 { |
|
181 // Note that the original complex fft routines were not written for |
|
182 // double complex arguments. They have been modified by adding an |
|
183 // implicit double precision (a-h,o-z) statement at the beginning of |
|
184 // each subroutine. |
|
185 |
|
186 F77_RET_T |
|
187 F77_FUNC (cffti, CFFTI) (const int&, Complex*); |
|
188 |
|
189 F77_RET_T |
|
190 F77_FUNC (cfftf, CFFTF) (const int&, Complex*, Complex*); |
|
191 |
|
192 F77_RET_T |
|
193 F77_FUNC (cfftb, CFFTB) (const int&, Complex*, Complex*); |
|
194 } |
|
195 |
|
196 ComplexNDArray |
|
197 NDArray::fourier (int dim) const |
|
198 { |
|
199 dim_vector dv = dims (); |
|
200 |
|
201 if (dim > dv.length () || dim < 0) |
|
202 return ComplexNDArray (); |
|
203 |
|
204 ComplexNDArray retval (dv); |
|
205 int npts = dv(dim); |
|
206 int nn = 4*npts+15; |
|
207 Array<Complex> wsave (nn); |
|
208 Complex *pwsave = wsave.fortran_vec (); |
|
209 |
|
210 OCTAVE_LOCAL_BUFFER (Complex, tmp, npts); |
|
211 |
|
212 int stride = 1; |
|
213 |
|
214 for (int i = 0; i < dim; i++) |
|
215 stride *= dv(i); |
|
216 |
|
217 int howmany = numel () / npts; |
|
218 howmany = (stride == 1 ? howmany : (howmany > stride ? stride : howmany)); |
|
219 int nloop = (stride == 1 ? 1 : numel () / npts / stride); |
|
220 int dist = (stride == 1 ? npts : 1); |
|
221 |
|
222 F77_FUNC (cffti, CFFTI) (npts, pwsave); |
|
223 |
|
224 for (int k = 0; k < nloop; k++) |
|
225 { |
|
226 for (int j = 0; j < howmany; j++) |
|
227 { |
|
228 OCTAVE_QUIT; |
|
229 |
|
230 for (int i = 0; i < npts; i++) |
|
231 tmp[i] = elem((i + k*npts)*stride + j*dist); |
|
232 |
|
233 F77_FUNC (cfftf, CFFTF) (npts, tmp, pwsave); |
|
234 |
|
235 for (int i = 0; i < npts; i++) |
|
236 retval ((i + k*npts)*stride + j*dist) = tmp[i]; |
|
237 } |
|
238 } |
|
239 |
|
240 return retval; |
|
241 } |
|
242 |
|
243 ComplexNDArray |
|
244 NDArray::ifourier (int dim) const |
|
245 { |
|
246 dim_vector dv = dims (); |
|
247 |
|
248 if (dim > dv.length () || dim < 0) |
|
249 return ComplexNDArray (); |
|
250 |
|
251 ComplexNDArray retval (dv); |
|
252 int npts = dv(dim); |
|
253 int nn = 4*npts+15; |
|
254 Array<Complex> wsave (nn); |
|
255 Complex *pwsave = wsave.fortran_vec (); |
|
256 |
|
257 OCTAVE_LOCAL_BUFFER (Complex, tmp, npts); |
|
258 |
|
259 int stride = 1; |
|
260 |
|
261 for (int i = 0; i < dim; i++) |
|
262 stride *= dv(i); |
|
263 |
|
264 int howmany = numel () / npts; |
|
265 howmany = (stride == 1 ? howmany : (howmany > stride ? stride : howmany)); |
|
266 int nloop = (stride == 1 ? 1 : numel () / npts / stride); |
|
267 int dist = (stride == 1 ? npts : 1); |
|
268 |
|
269 F77_FUNC (cffti, CFFTI) (npts, pwsave); |
|
270 |
|
271 for (int k = 0; k < nloop; k++) |
|
272 { |
|
273 for (int j = 0; j < howmany; j++) |
|
274 { |
|
275 OCTAVE_QUIT; |
|
276 |
|
277 for (int i = 0; i < npts; i++) |
|
278 tmp[i] = elem((i + k*npts)*stride + j*dist); |
|
279 |
|
280 F77_FUNC (cfftb, CFFTB) (npts, tmp, pwsave); |
|
281 |
|
282 for (int i = 0; i < npts; i++) |
|
283 retval ((i + k*npts)*stride + j*dist) = tmp[i] / |
|
284 static_cast<double> (npts); |
|
285 } |
|
286 } |
|
287 |
|
288 return retval; |
|
289 } |
|
290 |
|
291 ComplexNDArray |
|
292 NDArray::fourier2d (void) const |
|
293 { |
|
294 dim_vector dv = dims(); |
|
295 dim_vector dv2 (dv(0), dv(1)); |
|
296 int rank = 2; |
|
297 ComplexNDArray retval (*this); |
|
298 int stride = 1; |
|
299 |
|
300 for (int i = 0; i < rank; i++) |
|
301 { |
|
302 int npts = dv2(i); |
|
303 int nn = 4*npts+15; |
|
304 Array<Complex> wsave (nn); |
|
305 Complex *pwsave = wsave.fortran_vec (); |
|
306 Array<Complex> row (npts); |
|
307 Complex *prow = row.fortran_vec (); |
|
308 |
|
309 int howmany = numel () / npts; |
|
310 howmany = (stride == 1 ? howmany : |
|
311 (howmany > stride ? stride : howmany)); |
|
312 int nloop = (stride == 1 ? 1 : numel () / npts / stride); |
|
313 int dist = (stride == 1 ? npts : 1); |
|
314 |
|
315 F77_FUNC (cffti, CFFTI) (npts, pwsave); |
|
316 |
|
317 for (int k = 0; k < nloop; k++) |
|
318 { |
|
319 for (int j = 0; j < howmany; j++) |
|
320 { |
|
321 OCTAVE_QUIT; |
|
322 |
|
323 for (int l = 0; l < npts; l++) |
|
324 prow[l] = retval ((l + k*npts)*stride + j*dist); |
|
325 |
|
326 F77_FUNC (cfftf, CFFTF) (npts, prow, pwsave); |
|
327 |
|
328 for (int l = 0; l < npts; l++) |
|
329 retval ((l + k*npts)*stride + j*dist) = prow[l]; |
|
330 } |
|
331 } |
|
332 |
|
333 stride *= dv2(i); |
|
334 } |
|
335 |
|
336 return retval; |
|
337 } |
|
338 |
|
339 ComplexNDArray |
|
340 NDArray::ifourier2d (void) const |
|
341 { |
|
342 dim_vector dv = dims(); |
|
343 dim_vector dv2 (dv(0), dv(1)); |
|
344 int rank = 2; |
|
345 ComplexNDArray retval (*this); |
|
346 int stride = 1; |
|
347 |
|
348 for (int i = 0; i < rank; i++) |
|
349 { |
|
350 int npts = dv2(i); |
|
351 int nn = 4*npts+15; |
|
352 Array<Complex> wsave (nn); |
|
353 Complex *pwsave = wsave.fortran_vec (); |
|
354 Array<Complex> row (npts); |
|
355 Complex *prow = row.fortran_vec (); |
|
356 |
|
357 int howmany = numel () / npts; |
|
358 howmany = (stride == 1 ? howmany : |
|
359 (howmany > stride ? stride : howmany)); |
|
360 int nloop = (stride == 1 ? 1 : numel () / npts / stride); |
|
361 int dist = (stride == 1 ? npts : 1); |
|
362 |
|
363 F77_FUNC (cffti, CFFTI) (npts, pwsave); |
|
364 |
|
365 for (int k = 0; k < nloop; k++) |
|
366 { |
|
367 for (int j = 0; j < howmany; j++) |
|
368 { |
|
369 OCTAVE_QUIT; |
|
370 |
|
371 for (int l = 0; l < npts; l++) |
|
372 prow[l] = retval ((l + k*npts)*stride + j*dist); |
|
373 |
|
374 F77_FUNC (cfftb, CFFTB) (npts, prow, pwsave); |
|
375 |
|
376 for (int l = 0; l < npts; l++) |
|
377 retval ((l + k*npts)*stride + j*dist) = prow[l] / |
|
378 static_cast<double> (npts); |
|
379 } |
|
380 } |
|
381 |
|
382 stride *= dv2(i); |
|
383 } |
|
384 |
|
385 return retval; |
|
386 } |
|
387 |
|
388 ComplexNDArray |
|
389 NDArray::fourierNd (void) const |
|
390 { |
|
391 dim_vector dv = dims (); |
|
392 int rank = dv.length (); |
|
393 ComplexNDArray retval (*this); |
|
394 int stride = 1; |
|
395 |
|
396 for (int i = 0; i < rank; i++) |
|
397 { |
|
398 int npts = dv(i); |
|
399 int nn = 4*npts+15; |
|
400 Array<Complex> wsave (nn); |
|
401 Complex *pwsave = wsave.fortran_vec (); |
|
402 Array<Complex> row (npts); |
|
403 Complex *prow = row.fortran_vec (); |
|
404 |
|
405 int howmany = numel () / npts; |
|
406 howmany = (stride == 1 ? howmany : |
|
407 (howmany > stride ? stride : howmany)); |
|
408 int nloop = (stride == 1 ? 1 : numel () / npts / stride); |
|
409 int dist = (stride == 1 ? npts : 1); |
|
410 |
|
411 F77_FUNC (cffti, CFFTI) (npts, pwsave); |
|
412 |
|
413 for (int k = 0; k < nloop; k++) |
|
414 { |
|
415 for (int j = 0; j < howmany; j++) |
|
416 { |
|
417 OCTAVE_QUIT; |
|
418 |
|
419 for (int l = 0; l < npts; l++) |
|
420 prow[l] = retval ((l + k*npts)*stride + j*dist); |
|
421 |
|
422 F77_FUNC (cfftf, CFFTF) (npts, prow, pwsave); |
|
423 |
|
424 for (int l = 0; l < npts; l++) |
|
425 retval ((l + k*npts)*stride + j*dist) = prow[l]; |
|
426 } |
|
427 } |
|
428 |
|
429 stride *= dv(i); |
|
430 } |
|
431 |
|
432 return retval; |
|
433 } |
|
434 |
|
435 ComplexNDArray |
|
436 NDArray::ifourierNd (void) const |
|
437 { |
|
438 dim_vector dv = dims (); |
|
439 int rank = dv.length (); |
|
440 ComplexNDArray retval (*this); |
|
441 int stride = 1; |
|
442 |
|
443 for (int i = 0; i < rank; i++) |
|
444 { |
|
445 int npts = dv(i); |
|
446 int nn = 4*npts+15; |
|
447 Array<Complex> wsave (nn); |
|
448 Complex *pwsave = wsave.fortran_vec (); |
|
449 Array<Complex> row (npts); |
|
450 Complex *prow = row.fortran_vec (); |
|
451 |
|
452 int howmany = numel () / npts; |
|
453 howmany = (stride == 1 ? howmany : |
|
454 (howmany > stride ? stride : howmany)); |
|
455 int nloop = (stride == 1 ? 1 : numel () / npts / stride); |
|
456 int dist = (stride == 1 ? npts : 1); |
|
457 |
|
458 F77_FUNC (cffti, CFFTI) (npts, pwsave); |
|
459 |
|
460 for (int k = 0; k < nloop; k++) |
|
461 { |
|
462 for (int j = 0; j < howmany; j++) |
|
463 { |
|
464 OCTAVE_QUIT; |
|
465 |
|
466 for (int l = 0; l < npts; l++) |
|
467 prow[l] = retval ((l + k*npts)*stride + j*dist); |
|
468 |
|
469 F77_FUNC (cfftb, CFFTB) (npts, prow, pwsave); |
|
470 |
|
471 for (int l = 0; l < npts; l++) |
|
472 retval ((l + k*npts)*stride + j*dist) = prow[l] / |
|
473 static_cast<double> (npts); |
|
474 } |
|
475 } |
|
476 |
|
477 stride *= dv(i); |
|
478 } |
|
479 |
|
480 return retval; |
|
481 } |
|
482 |
|
483 #endif |
|
484 |
4543
|
485 // unary operations |
|
486 |
|
487 boolNDArray |
|
488 NDArray::operator ! (void) const |
|
489 { |
|
490 boolNDArray b (dims ()); |
|
491 |
|
492 for (int i = 0; i < length (); i++) |
|
493 b.elem (i) = ! elem (i); |
|
494 |
|
495 return b; |
|
496 } |
|
497 |
4634
|
498 bool |
|
499 NDArray::any_element_is_negative (bool neg_zero) const |
|
500 { |
|
501 int nel = nelem (); |
|
502 |
|
503 if (neg_zero) |
|
504 { |
|
505 for (int i = 0; i < nel; i++) |
|
506 if (lo_ieee_signbit (elem (i))) |
|
507 return true; |
|
508 } |
|
509 else |
|
510 { |
|
511 for (int i = 0; i < nel; i++) |
|
512 if (elem (i) < 0) |
|
513 return true; |
|
514 } |
|
515 |
|
516 return false; |
|
517 } |
|
518 |
|
519 |
|
520 bool |
|
521 NDArray::any_element_is_inf_or_nan (void) const |
|
522 { |
|
523 int nel = nelem (); |
|
524 |
|
525 for (int i = 0; i < nel; i++) |
|
526 { |
|
527 double val = elem (i); |
|
528 if (xisinf (val) || xisnan (val)) |
|
529 return true; |
|
530 } |
|
531 |
|
532 return false; |
|
533 } |
|
534 |
|
535 bool |
|
536 NDArray::all_elements_are_int_or_inf_or_nan (void) const |
|
537 { |
|
538 int nel = nelem (); |
|
539 |
|
540 for (int i = 0; i < nel; i++) |
|
541 { |
|
542 double val = elem (i); |
|
543 if (xisnan (val) || D_NINT (val) == val) |
|
544 continue; |
|
545 else |
|
546 return false; |
|
547 } |
|
548 |
|
549 return true; |
|
550 } |
|
551 |
|
552 // Return nonzero if any element of M is not an integer. Also extract |
|
553 // the largest and smallest values and return them in MAX_VAL and MIN_VAL. |
|
554 |
|
555 bool |
|
556 NDArray::all_integers (double& max_val, double& min_val) const |
|
557 { |
|
558 int nel = nelem (); |
|
559 |
|
560 if (nel > 0) |
|
561 { |
|
562 max_val = elem (0); |
|
563 min_val = elem (0); |
|
564 } |
|
565 else |
|
566 return false; |
|
567 |
|
568 for (int i = 0; i < nel; i++) |
|
569 { |
|
570 double val = elem (i); |
|
571 |
|
572 if (val > max_val) |
|
573 max_val = val; |
|
574 |
|
575 if (val < min_val) |
|
576 min_val = val; |
|
577 |
|
578 if (D_NINT (val) != val) |
|
579 return false; |
|
580 } |
|
581 |
|
582 return true; |
|
583 } |
|
584 |
|
585 bool |
|
586 NDArray::too_large_for_float (void) const |
|
587 { |
|
588 int nel = nelem (); |
|
589 |
|
590 for (int i = 0; i < nel; i++) |
|
591 { |
|
592 double val = elem (i); |
|
593 |
|
594 if (val > FLT_MAX || val < FLT_MIN) |
|
595 return true; |
|
596 } |
|
597 |
|
598 return false; |
|
599 } |
|
600 |
4513
|
601 // XXX FIXME XXX -- this is not quite the right thing. |
|
602 |
4556
|
603 boolNDArray |
4513
|
604 NDArray::all (int dim) const |
|
605 { |
4569
|
606 MX_ND_ANY_ALL_REDUCTION (MX_ND_ALL_EVAL (MX_ND_ALL_EXPR), true); |
4513
|
607 } |
|
608 |
4556
|
609 boolNDArray |
4513
|
610 NDArray::any (int dim) const |
|
611 { |
4569
|
612 MX_ND_ANY_ALL_REDUCTION (MX_ND_ANY_EVAL (MX_ND_ANY_EXPR), false); |
|
613 } |
|
614 |
4584
|
615 NDArray |
4569
|
616 NDArray::cumprod (int dim) const |
|
617 { |
4584
|
618 MX_ND_CUMULATIVE_OP (NDArray, double, 1, *); |
4569
|
619 } |
|
620 |
4584
|
621 NDArray |
4569
|
622 NDArray::cumsum (int dim) const |
|
623 { |
4584
|
624 MX_ND_CUMULATIVE_OP (NDArray, double, 0, +); |
4513
|
625 } |
|
626 |
4569
|
627 NDArray |
|
628 NDArray::prod (int dim) const |
|
629 { |
|
630 MX_ND_REAL_OP_REDUCTION (*= elem (iter_idx), 1); |
|
631 } |
|
632 |
|
633 NDArray |
|
634 NDArray::sumsq (int dim) const |
|
635 { |
|
636 MX_ND_REAL_OP_REDUCTION (+= std::pow (elem (iter_idx), 2), 0); |
|
637 } |
|
638 |
|
639 NDArray |
|
640 NDArray::sum (int dim) const |
|
641 { |
|
642 MX_ND_REAL_OP_REDUCTION (+= elem (iter_idx), 0); |
|
643 } |
|
644 |
4844
|
645 NDArray |
|
646 NDArray::max (int dim) const |
|
647 { |
|
648 ArrayN<int> dummy_idx; |
|
649 return max (dummy_idx, dim); |
|
650 } |
|
651 |
|
652 NDArray |
|
653 NDArray::max (ArrayN<int>& idx_arg, int dim) const |
|
654 { |
|
655 dim_vector dv = dims (); |
|
656 dim_vector dr = dims (); |
|
657 |
|
658 if (dv.numel () == 0 || dim > dv.length () || dim < 0) |
|
659 return NDArray (); |
|
660 |
|
661 dr(dim) = 1; |
|
662 |
|
663 NDArray result (dr); |
|
664 idx_arg.resize (dr); |
|
665 |
|
666 int x_stride = 1; |
|
667 int x_len = dv(dim); |
|
668 for (int i = 0; i < dim; i++) |
|
669 x_stride *= dv(i); |
|
670 |
|
671 for (int i = 0; i < dr.numel (); i++) |
|
672 { |
|
673 int x_offset; |
|
674 if (x_stride == 1) |
|
675 x_offset = i * x_len; |
|
676 else |
|
677 { |
|
678 int x_offset2 = 0; |
|
679 x_offset = i; |
|
680 while (x_offset >= x_stride) |
|
681 { |
|
682 x_offset -= x_stride; |
|
683 x_offset2++; |
|
684 } |
|
685 x_offset += x_offset2 * x_stride * x_len; |
|
686 } |
|
687 |
|
688 int idx_j; |
|
689 |
|
690 double tmp_max = octave_NaN; |
|
691 |
|
692 for (idx_j = 0; idx_j < x_len; idx_j++) |
|
693 { |
|
694 tmp_max = elem (idx_j * x_stride + x_offset); |
|
695 |
|
696 if (! octave_is_NaN_or_NA (tmp_max)) |
|
697 break; |
|
698 } |
|
699 |
|
700 for (int j = idx_j+1; j < x_len; j++) |
|
701 { |
|
702 double tmp = elem (j * x_stride + x_offset); |
|
703 |
|
704 if (octave_is_NaN_or_NA (tmp)) |
|
705 continue; |
|
706 else if (tmp > tmp_max) |
|
707 { |
|
708 idx_j = j; |
|
709 tmp_max = tmp; |
|
710 } |
|
711 } |
|
712 |
|
713 result.elem (i) = tmp_max; |
|
714 idx_arg.elem (i) = octave_is_NaN_or_NA (tmp_max) ? 0 : idx_j; |
|
715 } |
|
716 |
|
717 return result; |
|
718 } |
|
719 |
|
720 NDArray |
|
721 NDArray::min (int dim) const |
|
722 { |
|
723 ArrayN<int> dummy_idx; |
|
724 return min (dummy_idx, dim); |
|
725 } |
|
726 |
|
727 NDArray |
|
728 NDArray::min (ArrayN<int>& idx_arg, int dim) const |
|
729 { |
|
730 dim_vector dv = dims (); |
|
731 dim_vector dr = dims (); |
|
732 |
|
733 if (dv.numel () == 0 || dim > dv.length () || dim < 0) |
|
734 return NDArray (); |
|
735 |
|
736 dr(dim) = 1; |
|
737 |
|
738 NDArray result (dr); |
|
739 idx_arg.resize (dr); |
|
740 |
|
741 int x_stride = 1; |
|
742 int x_len = dv(dim); |
|
743 for (int i = 0; i < dim; i++) |
|
744 x_stride *= dv(i); |
|
745 |
|
746 for (int i = 0; i < dr.numel (); i++) |
|
747 { |
|
748 int x_offset; |
|
749 if (x_stride == 1) |
|
750 x_offset = i * x_len; |
|
751 else |
|
752 { |
|
753 int x_offset2 = 0; |
|
754 x_offset = i; |
|
755 while (x_offset >= x_stride) |
|
756 { |
|
757 x_offset -= x_stride; |
|
758 x_offset2++; |
|
759 } |
|
760 x_offset += x_offset2 * x_stride * x_len; |
|
761 } |
|
762 |
|
763 int idx_j; |
|
764 |
|
765 double tmp_min = octave_NaN; |
|
766 |
|
767 for (idx_j = 0; idx_j < x_len; idx_j++) |
|
768 { |
|
769 tmp_min = elem (idx_j * x_stride + x_offset); |
|
770 |
|
771 if (! octave_is_NaN_or_NA (tmp_min)) |
|
772 break; |
|
773 } |
|
774 |
|
775 for (int j = idx_j+1; j < x_len; j++) |
|
776 { |
|
777 double tmp = elem (j * x_stride + x_offset); |
|
778 |
|
779 if (octave_is_NaN_or_NA (tmp)) |
|
780 continue; |
|
781 else if (tmp < tmp_min) |
|
782 { |
|
783 idx_j = j; |
|
784 tmp_min = tmp; |
|
785 } |
|
786 } |
|
787 |
|
788 result.elem (i) = tmp_min; |
|
789 idx_arg.elem (i) = octave_is_NaN_or_NA (tmp_min) ? 0 : idx_j; |
|
790 } |
|
791 |
|
792 return result; |
|
793 } |
|
794 |
4806
|
795 int |
|
796 NDArray::cat (const NDArray& ra_arg, int dim, int iidx, int move) |
4758
|
797 { |
4806
|
798 return ::cat_ra (*this, ra_arg, dim, iidx, move); |
4758
|
799 } |
|
800 |
4634
|
801 NDArray |
|
802 real (const ComplexNDArray& a) |
|
803 { |
|
804 int a_len = a.length (); |
|
805 NDArray retval; |
|
806 if (a_len > 0) |
|
807 retval = NDArray (mx_inline_real_dup (a.data (), a_len), a.dims ()); |
|
808 return retval; |
|
809 } |
|
810 |
|
811 NDArray |
|
812 imag (const ComplexNDArray& a) |
|
813 { |
|
814 int a_len = a.length (); |
|
815 NDArray retval; |
|
816 if (a_len > 0) |
|
817 retval = NDArray (mx_inline_imag_dup (a.data (), a_len), a.dims ()); |
|
818 return retval; |
|
819 } |
|
820 |
|
821 NDArray |
4569
|
822 NDArray::abs (void) const |
|
823 { |
4634
|
824 NDArray retval (dims ()); |
4569
|
825 |
4634
|
826 int nel = nelem (); |
|
827 |
|
828 for (int i = 0; i < nel; i++) |
|
829 retval(i) = fabs (elem (i)); |
4569
|
830 |
|
831 return retval; |
|
832 } |
|
833 |
4532
|
834 Matrix |
|
835 NDArray::matrix_value (void) const |
|
836 { |
|
837 Matrix retval; |
|
838 |
|
839 int nd = ndims (); |
|
840 |
|
841 switch (nd) |
|
842 { |
|
843 case 1: |
|
844 retval = Matrix (Array2<double> (*this, dimensions(0), 1)); |
|
845 break; |
|
846 |
|
847 case 2: |
|
848 retval = Matrix (Array2<double> (*this, dimensions(0), dimensions(1))); |
|
849 break; |
|
850 |
|
851 default: |
|
852 (*current_liboctave_error_handler) |
4770
|
853 ("invalid conversion of NDArray to Matrix"); |
4532
|
854 break; |
|
855 } |
|
856 |
|
857 return retval; |
|
858 } |
|
859 |
|
860 void |
|
861 NDArray::increment_index (Array<int>& ra_idx, |
|
862 const dim_vector& dimensions, |
|
863 int start_dimension) |
|
864 { |
|
865 ::increment_index (ra_idx, dimensions, start_dimension); |
|
866 } |
|
867 |
4556
|
868 int |
|
869 NDArray::compute_index (Array<int>& ra_idx, |
|
870 const dim_vector& dimensions) |
|
871 { |
|
872 return ::compute_index (ra_idx, dimensions); |
|
873 } |
|
874 |
4687
|
875 // This contains no information on the array structure !!! |
|
876 std::ostream& |
|
877 operator << (std::ostream& os, const NDArray& a) |
|
878 { |
|
879 int nel = a.nelem (); |
|
880 |
|
881 for (int i = 0; i < nel; i++) |
|
882 { |
|
883 os << " "; |
|
884 octave_write_double (os, a.elem (i)); |
|
885 os << "\n"; |
|
886 } |
|
887 return os; |
|
888 } |
|
889 |
|
890 std::istream& |
|
891 operator >> (std::istream& is, NDArray& a) |
|
892 { |
|
893 int nel = a.nelem (); |
|
894 |
|
895 if (nel < 1 ) |
|
896 is.clear (std::ios::badbit); |
|
897 else |
|
898 { |
|
899 double tmp; |
|
900 for (int i = 0; i < nel; i++) |
|
901 { |
|
902 tmp = octave_read_double (is); |
|
903 if (is) |
|
904 a.elem (i) = tmp; |
|
905 else |
|
906 goto done; |
|
907 } |
|
908 } |
|
909 |
|
910 done: |
|
911 |
|
912 return is; |
|
913 } |
|
914 |
4844
|
915 // XXX FIXME XXX -- it would be nice to share code among the min/max |
|
916 // functions below. |
|
917 |
|
918 #define EMPTY_RETURN_CHECK(T) \ |
|
919 if (nel == 0) \ |
|
920 return T (dv); |
|
921 |
|
922 NDArray |
|
923 min (double d, const NDArray& m) |
|
924 { |
|
925 dim_vector dv = m.dims (); |
|
926 int nel = dv.numel (); |
|
927 |
|
928 EMPTY_RETURN_CHECK (NDArray); |
|
929 |
|
930 NDArray result (dv); |
|
931 |
|
932 for (int i = 0; i < nel; i++) |
|
933 { |
|
934 OCTAVE_QUIT; |
|
935 result (i) = xmin (d, m (i)); |
|
936 } |
|
937 |
|
938 return result; |
|
939 } |
|
940 |
|
941 NDArray |
|
942 min (const NDArray& m, double d) |
|
943 { |
|
944 dim_vector dv = m.dims (); |
|
945 int nel = dv.numel (); |
|
946 |
|
947 EMPTY_RETURN_CHECK (NDArray); |
|
948 |
|
949 NDArray result (dv); |
|
950 |
|
951 for (int i = 0; i < nel; i++) |
|
952 { |
|
953 OCTAVE_QUIT; |
|
954 result (i) = xmin (d, m (i)); |
|
955 } |
|
956 |
|
957 return result; |
|
958 } |
|
959 |
|
960 NDArray |
|
961 min (const NDArray& a, const NDArray& b) |
|
962 { |
|
963 dim_vector dv = a.dims (); |
|
964 int nel = dv.numel (); |
|
965 |
|
966 if (dv != b.dims ()) |
|
967 { |
|
968 (*current_liboctave_error_handler) |
|
969 ("two-arg min expecting args of same size"); |
|
970 return NDArray (); |
|
971 } |
|
972 |
|
973 EMPTY_RETURN_CHECK (NDArray); |
|
974 |
|
975 NDArray result (dv); |
|
976 |
|
977 for (int i = 0; i < nel; i++) |
|
978 { |
|
979 OCTAVE_QUIT; |
|
980 result (i) = xmin (a (i), b (i)); |
|
981 } |
|
982 |
|
983 return result; |
|
984 } |
|
985 |
|
986 NDArray |
|
987 max (double d, const NDArray& m) |
|
988 { |
|
989 dim_vector dv = m.dims (); |
|
990 int nel = dv.numel (); |
|
991 |
|
992 EMPTY_RETURN_CHECK (NDArray); |
|
993 |
|
994 NDArray result (dv); |
|
995 |
|
996 for (int i = 0; i < nel; i++) |
|
997 { |
|
998 OCTAVE_QUIT; |
|
999 result (i) = xmax (d, m (i)); |
|
1000 } |
|
1001 |
|
1002 return result; |
|
1003 } |
|
1004 |
|
1005 NDArray |
|
1006 max (const NDArray& m, double d) |
|
1007 { |
|
1008 dim_vector dv = m.dims (); |
|
1009 int nel = dv.numel (); |
|
1010 |
|
1011 EMPTY_RETURN_CHECK (NDArray); |
|
1012 |
|
1013 NDArray result (dv); |
|
1014 |
|
1015 for (int i = 0; i < nel; i++) |
|
1016 { |
|
1017 OCTAVE_QUIT; |
|
1018 result (i) = xmax (d, m (i)); |
|
1019 } |
|
1020 |
|
1021 return result; |
|
1022 } |
|
1023 |
|
1024 NDArray |
|
1025 max (const NDArray& a, const NDArray& b) |
|
1026 { |
|
1027 dim_vector dv = a.dims (); |
|
1028 int nel = dv.numel (); |
|
1029 |
|
1030 if (dv != b.dims ()) |
|
1031 { |
|
1032 (*current_liboctave_error_handler) |
|
1033 ("two-arg max expecting args of same size"); |
|
1034 return NDArray (); |
|
1035 } |
|
1036 |
|
1037 EMPTY_RETURN_CHECK (NDArray); |
|
1038 |
|
1039 NDArray result (dv); |
|
1040 |
|
1041 for (int i = 0; i < nel; i++) |
|
1042 { |
|
1043 OCTAVE_QUIT; |
|
1044 result (i) = xmax (a (i), b (i)); |
|
1045 } |
|
1046 |
|
1047 return result; |
|
1048 } |
|
1049 |
4543
|
1050 NDS_CMP_OPS(NDArray, , double, ) |
|
1051 NDS_BOOL_OPS(NDArray, double, 0.0) |
|
1052 |
|
1053 SND_CMP_OPS(double, , NDArray, ) |
|
1054 SND_BOOL_OPS(double, NDArray, 0.0) |
|
1055 |
|
1056 NDND_CMP_OPS(NDArray, , NDArray, ) |
|
1057 NDND_BOOL_OPS(NDArray, NDArray, 0.0) |
|
1058 |
4513
|
1059 /* |
|
1060 ;;; Local Variables: *** |
|
1061 ;;; mode: C++ *** |
|
1062 ;;; End: *** |
|
1063 */ |