4514
|
1 // N-D Array manipulations. |
|
2 /* |
|
3 |
|
4 Copyright (C) 1996, 1997 John W. Eaton |
|
5 |
|
6 This file is part of Octave. |
|
7 |
|
8 Octave is free software; you can redistribute it and/or modify it |
|
9 under the terms of the GNU General Public License as published by the |
|
10 Free Software Foundation; either version 2, or (at your option) any |
|
11 later version. |
|
12 |
|
13 Octave is distributed in the hope that it will be useful, but WITHOUT |
|
14 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
|
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
|
16 for more details. |
|
17 |
|
18 You should have received a copy of the GNU General Public License |
|
19 along with Octave; see the file COPYING. If not, write to the Free |
|
20 Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. |
|
21 |
|
22 */ |
|
23 |
|
24 #if defined (__GNUG__) && defined (USE_PRAGMA_INTERFACE_IMPLEMENTATION) |
|
25 #pragma implementation |
|
26 #endif |
|
27 |
|
28 #ifdef HAVE_CONFIG_H |
|
29 #include <config.h> |
|
30 #endif |
|
31 |
4687
|
32 #include <cfloat> |
4780
|
33 #include <vector> |
4687
|
34 |
4588
|
35 #include "Array-util.h" |
4514
|
36 #include "CNDArray.h" |
|
37 #include "mx-base.h" |
4773
|
38 #include "f77-fcn.h" |
4514
|
39 #include "lo-ieee.h" |
4687
|
40 #include "lo-mappers.h" |
4514
|
41 |
4773
|
42 #if defined (HAVE_FFTW3) |
4780
|
43 #include "oct-fftw.h" |
4773
|
44 #else |
|
45 extern "C" |
|
46 { |
|
47 // Note that the original complex fft routines were not written for |
|
48 // double complex arguments. They have been modified by adding an |
|
49 // implicit double precision (a-h,o-z) statement at the beginning of |
|
50 // each subroutine. |
|
51 |
|
52 F77_RET_T |
|
53 F77_FUNC (cffti, CFFTI) (const int&, Complex*); |
|
54 |
|
55 F77_RET_T |
|
56 F77_FUNC (cfftf, CFFTF) (const int&, Complex*, Complex*); |
|
57 |
|
58 F77_RET_T |
|
59 F77_FUNC (cfftb, CFFTB) (const int&, Complex*, Complex*); |
|
60 } |
|
61 #endif |
|
62 |
4543
|
63 // XXX FIXME XXX -- could we use a templated mixed-type copy function |
|
64 // here? |
|
65 |
|
66 ComplexNDArray::ComplexNDArray (const NDArray& a) |
|
67 : MArrayN<Complex> (a.dims ()) |
|
68 { |
|
69 for (int i = 0; i < a.length (); i++) |
|
70 elem (i) = a.elem (i); |
|
71 } |
|
72 |
|
73 ComplexNDArray::ComplexNDArray (const boolNDArray& a) |
|
74 : MArrayN<Complex> (a.dims ()) |
|
75 { |
|
76 for (int i = 0; i < a.length (); i++) |
|
77 elem (i) = a.elem (i); |
|
78 } |
|
79 |
|
80 ComplexNDArray::ComplexNDArray (const charNDArray& a) |
|
81 : MArrayN<Complex> (a.dims ()) |
|
82 { |
|
83 for (int i = 0; i < a.length (); i++) |
|
84 elem (i) = a.elem (i); |
|
85 } |
|
86 |
4773
|
87 #if defined (HAVE_FFTW3) |
|
88 ComplexNDArray |
|
89 ComplexNDArray::fourier (int dim) const |
|
90 { |
|
91 dim_vector dv = dims (); |
|
92 |
|
93 if (dim > dv.length () || dim < 0) |
|
94 return ComplexNDArray (); |
|
95 |
|
96 int stride = 1; |
|
97 int n = dv(dim); |
|
98 |
|
99 for (int i = 0; i < dim; i++) |
|
100 stride *= dv(i); |
|
101 |
|
102 int howmany = numel () / dv (dim); |
|
103 howmany = (stride == 1 ? howmany : (howmany > stride ? stride : howmany)); |
|
104 int nloop = (stride == 1 ? 1 : numel () / dv (dim) / stride); |
|
105 int dist = (stride == 1 ? n : 1); |
|
106 |
|
107 const Complex *in (fortran_vec ()); |
|
108 ComplexNDArray retval (dv); |
|
109 Complex *out (retval.fortran_vec ()); |
|
110 |
|
111 // Need to be careful here about the distance between fft's |
|
112 for (int k = 0; k < nloop; k++) |
|
113 octave_fftw::fft (in + k * stride * n, out + k * stride * n, |
|
114 n, howmany, stride, dist); |
|
115 |
|
116 return retval; |
|
117 } |
|
118 |
|
119 ComplexNDArray |
|
120 ComplexNDArray::ifourier (const int dim) const |
|
121 { |
|
122 dim_vector dv = dims (); |
|
123 |
|
124 if (dim > dv.length () || dim < 0) |
|
125 return ComplexNDArray (); |
|
126 |
|
127 int stride = 1; |
|
128 int n = dv(dim); |
|
129 |
|
130 for (int i = 0; i < dim; i++) |
|
131 stride *= dv(i); |
|
132 |
|
133 int howmany = numel () / dv (dim); |
|
134 howmany = (stride == 1 ? howmany : (howmany > stride ? stride : howmany)); |
|
135 int nloop = (stride == 1 ? 1 : numel () / dv (dim) / stride); |
|
136 int dist = (stride == 1 ? n : 1); |
|
137 |
|
138 const Complex *in (fortran_vec ()); |
|
139 ComplexNDArray retval (dv); |
|
140 Complex *out (retval.fortran_vec ()); |
|
141 |
|
142 // Need to be careful here about the distance between fft's |
|
143 for (int k = 0; k < nloop; k++) |
|
144 octave_fftw::ifft (in + k * stride * n, out + k * stride * n, |
|
145 n, howmany, stride, dist); |
|
146 |
|
147 return retval; |
|
148 } |
|
149 |
|
150 ComplexNDArray |
|
151 ComplexNDArray::fourier2d (void) const |
|
152 { |
|
153 dim_vector dv = dims(); |
|
154 if (dv.length () < 2) |
|
155 return ComplexNDArray (); |
|
156 |
|
157 dim_vector dv2(dv(0), dv(1)); |
|
158 const Complex *in = fortran_vec (); |
|
159 ComplexNDArray retval (dv); |
|
160 Complex *out = retval.fortran_vec (); |
|
161 int howmany = numel() / dv(0) / dv(1); |
|
162 int dist = dv(0) * dv(1); |
|
163 |
|
164 for (int i=0; i < howmany; i++) |
|
165 octave_fftw::fftNd (in + i*dist, out + i*dist, 2, dv2); |
|
166 |
|
167 return retval; |
|
168 } |
|
169 |
|
170 ComplexNDArray |
|
171 ComplexNDArray::ifourier2d (void) const |
|
172 { |
|
173 dim_vector dv = dims(); |
|
174 if (dv.length () < 2) |
|
175 return ComplexNDArray (); |
|
176 |
|
177 dim_vector dv2(dv(0), dv(1)); |
|
178 const Complex *in = fortran_vec (); |
|
179 ComplexNDArray retval (dv); |
|
180 Complex *out = retval.fortran_vec (); |
|
181 int howmany = numel() / dv(0) / dv(1); |
|
182 int dist = dv(0) * dv(1); |
|
183 |
|
184 for (int i=0; i < howmany; i++) |
|
185 octave_fftw::ifftNd (in + i*dist, out + i*dist, 2, dv2); |
|
186 |
|
187 return retval; |
|
188 } |
|
189 |
|
190 ComplexNDArray |
|
191 ComplexNDArray::fourierNd (void) const |
|
192 { |
|
193 dim_vector dv = dims (); |
|
194 int rank = dv.length (); |
|
195 |
|
196 const Complex *in (fortran_vec ()); |
|
197 ComplexNDArray retval (dv); |
|
198 Complex *out (retval.fortran_vec ()); |
|
199 |
|
200 octave_fftw::fftNd (in, out, rank, dv); |
|
201 |
|
202 return retval; |
|
203 } |
|
204 |
|
205 ComplexNDArray |
|
206 ComplexNDArray::ifourierNd (void) const |
|
207 { |
|
208 dim_vector dv = dims (); |
|
209 int rank = dv.length (); |
|
210 |
|
211 const Complex *in (fortran_vec ()); |
|
212 ComplexNDArray retval (dv); |
|
213 Complex *out (retval.fortran_vec ()); |
|
214 |
|
215 octave_fftw::ifftNd (in, out, rank, dv); |
|
216 |
|
217 return retval; |
|
218 } |
|
219 |
|
220 #else |
|
221 ComplexNDArray |
|
222 ComplexNDArray::fourier (int dim) const |
|
223 { |
|
224 dim_vector dv = dims (); |
|
225 |
|
226 if (dim > dv.length () || dim < 0) |
|
227 return ComplexNDArray (); |
|
228 |
|
229 ComplexNDArray retval (dv); |
|
230 int npts = dv(dim); |
|
231 int nn = 4*npts+15; |
|
232 Array<Complex> wsave (nn); |
|
233 Complex *pwsave = wsave.fortran_vec (); |
|
234 |
|
235 OCTAVE_LOCAL_BUFFER (Complex, tmp, npts); |
|
236 |
|
237 int stride = 1; |
|
238 |
|
239 for (int i = 0; i < dim; i++) |
|
240 stride *= dv(i); |
|
241 |
|
242 int howmany = numel () / npts; |
|
243 howmany = (stride == 1 ? howmany : (howmany > stride ? stride : howmany)); |
|
244 int nloop = (stride == 1 ? 1 : numel () / npts / stride); |
|
245 int dist = (stride == 1 ? npts : 1); |
|
246 |
|
247 F77_FUNC (cffti, CFFTI) (npts, pwsave); |
|
248 |
|
249 for (int k = 0; k < nloop; k++) |
|
250 { |
|
251 for (int j = 0; j < howmany; j++) |
|
252 { |
|
253 OCTAVE_QUIT; |
|
254 |
|
255 for (int i = 0; i < npts; i++) |
|
256 tmp[i] = elem((i + k*npts)*stride + j*dist); |
|
257 |
|
258 F77_FUNC (cfftf, CFFTF) (npts, tmp, pwsave); |
|
259 |
|
260 for (int i = 0; i < npts; i++) |
|
261 retval ((i + k*npts)*stride + j*dist) = tmp[i]; |
|
262 } |
|
263 } |
|
264 |
|
265 return retval; |
|
266 } |
|
267 |
|
268 ComplexNDArray |
|
269 ComplexNDArray::ifourier (int dim) const |
|
270 { |
|
271 dim_vector dv = dims (); |
|
272 |
|
273 if (dim > dv.length () || dim < 0) |
|
274 return ComplexNDArray (); |
|
275 |
|
276 ComplexNDArray retval (dv); |
|
277 int npts = dv(dim); |
|
278 int nn = 4*npts+15; |
|
279 Array<Complex> wsave (nn); |
|
280 Complex *pwsave = wsave.fortran_vec (); |
|
281 |
|
282 OCTAVE_LOCAL_BUFFER (Complex, tmp, npts); |
|
283 |
|
284 int stride = 1; |
|
285 |
|
286 for (int i = 0; i < dim; i++) |
|
287 stride *= dv(i); |
|
288 |
|
289 int howmany = numel () / npts; |
|
290 howmany = (stride == 1 ? howmany : (howmany > stride ? stride : howmany)); |
|
291 int nloop = (stride == 1 ? 1 : numel () / npts / stride); |
|
292 int dist = (stride == 1 ? npts : 1); |
|
293 |
|
294 F77_FUNC (cffti, CFFTI) (npts, pwsave); |
|
295 |
|
296 for (int k = 0; k < nloop; k++) |
|
297 { |
|
298 for (int j = 0; j < howmany; j++) |
|
299 { |
|
300 OCTAVE_QUIT; |
|
301 |
|
302 for (int i = 0; i < npts; i++) |
|
303 tmp[i] = elem((i + k*npts)*stride + j*dist); |
|
304 |
|
305 F77_FUNC (cfftb, CFFTB) (npts, tmp, pwsave); |
|
306 |
|
307 for (int i = 0; i < npts; i++) |
|
308 retval ((i + k*npts)*stride + j*dist) = tmp[i] / |
|
309 static_cast<double> (npts); |
|
310 } |
|
311 } |
|
312 |
|
313 return retval; |
|
314 } |
|
315 |
|
316 ComplexNDArray |
|
317 ComplexNDArray::fourier2d (void) const |
|
318 { |
|
319 dim_vector dv = dims (); |
|
320 dim_vector dv2 (dv(0), dv(1)); |
|
321 int rank = 2; |
|
322 ComplexNDArray retval (*this); |
|
323 int stride = 1; |
|
324 |
|
325 for (int i = 0; i < rank; i++) |
|
326 { |
|
327 int npts = dv2(i); |
|
328 int nn = 4*npts+15; |
|
329 Array<Complex> wsave (nn); |
|
330 Complex *pwsave = wsave.fortran_vec (); |
|
331 Array<Complex> row (npts); |
|
332 Complex *prow = row.fortran_vec (); |
|
333 |
|
334 int howmany = numel () / npts; |
|
335 howmany = (stride == 1 ? howmany : |
|
336 (howmany > stride ? stride : howmany)); |
|
337 int nloop = (stride == 1 ? 1 : numel () / npts / stride); |
|
338 int dist = (stride == 1 ? npts : 1); |
|
339 |
|
340 F77_FUNC (cffti, CFFTI) (npts, pwsave); |
|
341 |
|
342 for (int k = 0; k < nloop; k++) |
|
343 { |
|
344 for (int j = 0; j < howmany; j++) |
|
345 { |
|
346 OCTAVE_QUIT; |
|
347 |
|
348 for (int l = 0; l < npts; l++) |
|
349 prow[l] = retval ((l + k*npts)*stride + j*dist); |
|
350 |
|
351 F77_FUNC (cfftf, CFFTF) (npts, prow, pwsave); |
|
352 |
|
353 for (int l = 0; l < npts; l++) |
|
354 retval ((l + k*npts)*stride + j*dist) = prow[l]; |
|
355 } |
|
356 } |
|
357 |
|
358 stride *= dv2(i); |
|
359 } |
|
360 |
|
361 return retval; |
|
362 } |
|
363 |
|
364 ComplexNDArray |
|
365 ComplexNDArray::ifourier2d (void) const |
|
366 { |
|
367 dim_vector dv = dims(); |
|
368 dim_vector dv2 (dv(0), dv(1)); |
|
369 int rank = 2; |
|
370 ComplexNDArray retval (*this); |
|
371 int stride = 1; |
|
372 |
|
373 for (int i = 0; i < rank; i++) |
|
374 { |
|
375 int npts = dv2(i); |
|
376 int nn = 4*npts+15; |
|
377 Array<Complex> wsave (nn); |
|
378 Complex *pwsave = wsave.fortran_vec (); |
|
379 Array<Complex> row (npts); |
|
380 Complex *prow = row.fortran_vec (); |
|
381 |
|
382 int howmany = numel () / npts; |
|
383 howmany = (stride == 1 ? howmany : |
|
384 (howmany > stride ? stride : howmany)); |
|
385 int nloop = (stride == 1 ? 1 : numel () / npts / stride); |
|
386 int dist = (stride == 1 ? npts : 1); |
|
387 |
|
388 F77_FUNC (cffti, CFFTI) (npts, pwsave); |
|
389 |
|
390 for (int k = 0; k < nloop; k++) |
|
391 { |
|
392 for (int j = 0; j < howmany; j++) |
|
393 { |
|
394 OCTAVE_QUIT; |
|
395 |
|
396 for (int l = 0; l < npts; l++) |
|
397 prow[l] = retval ((l + k*npts)*stride + j*dist); |
|
398 |
|
399 F77_FUNC (cfftb, CFFTB) (npts, prow, pwsave); |
|
400 |
|
401 for (int l = 0; l < npts; l++) |
|
402 retval ((l + k*npts)*stride + j*dist) = prow[l] / |
|
403 static_cast<double> (npts); |
|
404 } |
|
405 } |
|
406 |
|
407 stride *= dv2(i); |
|
408 } |
|
409 |
|
410 return retval; |
|
411 } |
|
412 |
|
413 ComplexNDArray |
|
414 ComplexNDArray::fourierNd (void) const |
|
415 { |
|
416 dim_vector dv = dims (); |
|
417 int rank = dv.length (); |
|
418 ComplexNDArray retval (*this); |
|
419 int stride = 1; |
|
420 |
|
421 for (int i = 0; i < rank; i++) |
|
422 { |
|
423 int npts = dv(i); |
|
424 int nn = 4*npts+15; |
|
425 Array<Complex> wsave (nn); |
|
426 Complex *pwsave = wsave.fortran_vec (); |
|
427 Array<Complex> row (npts); |
|
428 Complex *prow = row.fortran_vec (); |
|
429 |
|
430 int howmany = numel () / npts; |
|
431 howmany = (stride == 1 ? howmany : |
|
432 (howmany > stride ? stride : howmany)); |
|
433 int nloop = (stride == 1 ? 1 : numel () / npts / stride); |
|
434 int dist = (stride == 1 ? npts : 1); |
|
435 |
|
436 F77_FUNC (cffti, CFFTI) (npts, pwsave); |
|
437 |
|
438 for (int k = 0; k < nloop; k++) |
|
439 { |
|
440 for (int j = 0; j < howmany; j++) |
|
441 { |
|
442 OCTAVE_QUIT; |
|
443 |
|
444 for (int l = 0; l < npts; l++) |
|
445 prow[l] = retval ((l + k*npts)*stride + j*dist); |
|
446 |
|
447 F77_FUNC (cfftf, CFFTF) (npts, prow, pwsave); |
|
448 |
|
449 for (int l = 0; l < npts; l++) |
|
450 retval ((l + k*npts)*stride + j*dist) = prow[l]; |
|
451 } |
|
452 } |
|
453 |
|
454 stride *= dv(i); |
|
455 } |
|
456 |
|
457 return retval; |
|
458 } |
|
459 |
|
460 ComplexNDArray |
|
461 ComplexNDArray::ifourierNd (void) const |
|
462 { |
|
463 dim_vector dv = dims (); |
|
464 int rank = dv.length (); |
|
465 ComplexNDArray retval (*this); |
|
466 int stride = 1; |
|
467 |
|
468 for (int i = 0; i < rank; i++) |
|
469 { |
|
470 int npts = dv(i); |
|
471 int nn = 4*npts+15; |
|
472 Array<Complex> wsave (nn); |
|
473 Complex *pwsave = wsave.fortran_vec (); |
|
474 Array<Complex> row (npts); |
|
475 Complex *prow = row.fortran_vec (); |
|
476 |
|
477 int howmany = numel () / npts; |
|
478 howmany = (stride == 1 ? howmany : |
|
479 (howmany > stride ? stride : howmany)); |
|
480 int nloop = (stride == 1 ? 1 : numel () / npts / stride); |
|
481 int dist = (stride == 1 ? npts : 1); |
|
482 |
|
483 F77_FUNC (cffti, CFFTI) (npts, pwsave); |
|
484 |
|
485 for (int k = 0; k < nloop; k++) |
|
486 { |
|
487 for (int j = 0; j < howmany; j++) |
|
488 { |
|
489 OCTAVE_QUIT; |
|
490 |
|
491 for (int l = 0; l < npts; l++) |
|
492 prow[l] = retval ((l + k*npts)*stride + j*dist); |
|
493 |
|
494 F77_FUNC (cfftb, CFFTB) (npts, prow, pwsave); |
|
495 |
|
496 for (int l = 0; l < npts; l++) |
|
497 retval ((l + k*npts)*stride + j*dist) = prow[l] / |
|
498 static_cast<double> (npts); |
|
499 } |
|
500 } |
|
501 |
|
502 stride *= dv(i); |
|
503 } |
|
504 |
|
505 return retval; |
|
506 } |
|
507 |
|
508 #endif |
|
509 |
4543
|
510 // unary operations |
|
511 |
|
512 boolNDArray |
|
513 ComplexNDArray::operator ! (void) const |
|
514 { |
|
515 boolNDArray b (dims ()); |
|
516 |
|
517 for (int i = 0; i < length (); i++) |
|
518 b.elem (i) = elem (i) != 0.0; |
|
519 |
|
520 return b; |
|
521 } |
|
522 |
4514
|
523 // XXX FIXME XXX -- this is not quite the right thing. |
|
524 |
4687
|
525 bool |
|
526 ComplexNDArray::any_element_is_inf_or_nan (void) const |
|
527 { |
|
528 int nel = nelem (); |
|
529 |
|
530 for (int i = 0; i < nel; i++) |
|
531 { |
|
532 Complex val = elem (i); |
|
533 if (xisinf (val) || xisnan (val)) |
|
534 return true; |
|
535 } |
|
536 return false; |
|
537 } |
|
538 |
|
539 // Return true if no elements have imaginary components. |
|
540 |
|
541 bool |
|
542 ComplexNDArray::all_elements_are_real (void) const |
|
543 { |
|
544 int nel = nelem (); |
|
545 |
|
546 for (int i = 0; i < nel; i++) |
|
547 { |
|
548 double ip = imag (elem (i)); |
|
549 |
|
550 if (ip != 0.0 || lo_ieee_signbit (ip)) |
|
551 return false; |
|
552 } |
|
553 |
|
554 return true; |
|
555 } |
|
556 |
|
557 // Return nonzero if any element of CM has a non-integer real or |
|
558 // imaginary part. Also extract the largest and smallest (real or |
|
559 // imaginary) values and return them in MAX_VAL and MIN_VAL. |
|
560 |
|
561 bool |
|
562 ComplexNDArray::all_integers (double& max_val, double& min_val) const |
|
563 { |
|
564 int nel = nelem (); |
|
565 |
|
566 if (nel > 0) |
|
567 { |
|
568 Complex val = elem (0); |
|
569 |
|
570 double r_val = real (val); |
|
571 double i_val = imag (val); |
|
572 |
|
573 max_val = r_val; |
|
574 min_val = r_val; |
|
575 |
|
576 if (i_val > max_val) |
|
577 max_val = i_val; |
|
578 |
|
579 if (i_val < max_val) |
|
580 min_val = i_val; |
|
581 } |
|
582 else |
|
583 return false; |
|
584 |
|
585 for (int i = 0; i < nel; i++) |
|
586 { |
|
587 Complex val = elem (i); |
|
588 |
|
589 double r_val = real (val); |
|
590 double i_val = imag (val); |
|
591 |
|
592 if (r_val > max_val) |
|
593 max_val = r_val; |
|
594 |
|
595 if (i_val > max_val) |
|
596 max_val = i_val; |
|
597 |
|
598 if (r_val < min_val) |
|
599 min_val = r_val; |
|
600 |
|
601 if (i_val < min_val) |
|
602 min_val = i_val; |
|
603 |
|
604 if (D_NINT (r_val) != r_val || D_NINT (i_val) != i_val) |
|
605 return false; |
|
606 } |
|
607 |
|
608 return true; |
|
609 } |
|
610 |
|
611 bool |
|
612 ComplexNDArray::too_large_for_float (void) const |
|
613 { |
|
614 int nel = nelem (); |
|
615 |
|
616 for (int i = 0; i < nel; i++) |
|
617 { |
|
618 Complex val = elem (i); |
|
619 |
|
620 double r_val = real (val); |
|
621 double i_val = imag (val); |
|
622 |
|
623 if (r_val > FLT_MAX |
|
624 || i_val > FLT_MAX |
|
625 || r_val < FLT_MIN |
|
626 || i_val < FLT_MIN) |
|
627 return true; |
|
628 } |
|
629 |
|
630 return false; |
|
631 } |
|
632 |
4556
|
633 boolNDArray |
4514
|
634 ComplexNDArray::all (int dim) const |
|
635 { |
4569
|
636 MX_ND_ANY_ALL_REDUCTION |
|
637 (MX_ND_ALL_EVAL (elem (iter_idx) == Complex (0, 0)), true); |
4514
|
638 } |
|
639 |
4556
|
640 boolNDArray |
4514
|
641 ComplexNDArray::any (int dim) const |
|
642 { |
4569
|
643 MX_ND_ANY_ALL_REDUCTION |
|
644 (MX_ND_ANY_EVAL (elem (iter_idx) != Complex (0, 0)), false); |
|
645 } |
|
646 |
4584
|
647 ComplexNDArray |
4569
|
648 ComplexNDArray::cumprod (int dim) const |
|
649 { |
4584
|
650 MX_ND_CUMULATIVE_OP (ComplexNDArray, Complex, Complex (1, 0), *); |
4569
|
651 } |
|
652 |
4584
|
653 ComplexNDArray |
4569
|
654 ComplexNDArray::cumsum (int dim) const |
|
655 { |
4584
|
656 MX_ND_CUMULATIVE_OP (ComplexNDArray, Complex, Complex (0, 0), +); |
4569
|
657 } |
|
658 |
|
659 ComplexNDArray |
|
660 ComplexNDArray::prod (int dim) const |
|
661 { |
|
662 MX_ND_COMPLEX_OP_REDUCTION (*= elem (iter_idx), Complex (1, 0)); |
|
663 } |
|
664 |
|
665 ComplexNDArray |
|
666 ComplexNDArray::sumsq (int dim) const |
|
667 { |
|
668 MX_ND_COMPLEX_OP_REDUCTION |
|
669 (+= imag (elem (iter_idx)) |
|
670 ? elem (iter_idx) * conj (elem (iter_idx)) |
|
671 : std::pow (elem (iter_idx), 2), Complex (0, 0)); |
|
672 } |
|
673 |
|
674 ComplexNDArray |
|
675 ComplexNDArray::sum (int dim) const |
|
676 { |
|
677 MX_ND_COMPLEX_OP_REDUCTION (+= elem (iter_idx), Complex (0, 0)); |
|
678 } |
|
679 |
4806
|
680 int |
|
681 ComplexNDArray::cat (const ComplexNDArray& ra_arg, int dim, int iidx, int move) |
4758
|
682 { |
4806
|
683 return ::cat_ra(*this, ra_arg, dim, iidx, move); |
4758
|
684 } |
|
685 |
4634
|
686 NDArray |
4569
|
687 ComplexNDArray::abs (void) const |
|
688 { |
4634
|
689 NDArray retval (dims ()); |
4569
|
690 |
4634
|
691 int nel = nelem (); |
|
692 |
|
693 for (int i = 0; i < nel; i++) |
|
694 retval(i) = ::abs (elem (i)); |
4569
|
695 |
|
696 return retval; |
4514
|
697 } |
|
698 |
4765
|
699 ComplexNDArray& |
|
700 ComplexNDArray::insert (const NDArray& a, int r, int c) |
|
701 { |
|
702 dim_vector a_dv = a.dims (); |
|
703 |
|
704 int n = a_dv.length (); |
|
705 |
|
706 if (n == dimensions.length ()) |
|
707 { |
|
708 Array<int> a_ra_idx (a_dv.length (), 0); |
|
709 |
|
710 a_ra_idx.elem (0) = r; |
|
711 a_ra_idx.elem (1) = c; |
|
712 |
|
713 for (int i = 0; i < n; i++) |
|
714 { |
|
715 if (a_ra_idx (i) < 0 || (a_ra_idx (i) + a_dv (i)) > dimensions (i)) |
|
716 { |
|
717 (*current_liboctave_error_handler) |
|
718 ("Array<T>::insert: range error for insert"); |
|
719 return *this; |
|
720 } |
|
721 } |
|
722 |
|
723 a_ra_idx.elem (0) = 0; |
|
724 a_ra_idx.elem (1) = 0; |
|
725 |
|
726 int n_elt = a.numel (); |
|
727 |
|
728 // IS make_unique () NECCESSARY HERE?? |
|
729 |
|
730 for (int i = 0; i < n_elt; i++) |
|
731 { |
|
732 Array<int> ra_idx = a_ra_idx; |
|
733 |
|
734 ra_idx.elem (0) = a_ra_idx (0) + r; |
|
735 ra_idx.elem (1) = a_ra_idx (1) + c; |
|
736 |
|
737 elem (ra_idx) = a.elem (a_ra_idx); |
|
738 |
|
739 increment_index (a_ra_idx, a_dv); |
|
740 } |
|
741 } |
|
742 else |
|
743 (*current_liboctave_error_handler) |
|
744 ("Array<T>::insert: invalid indexing operation"); |
|
745 |
|
746 return *this; |
|
747 } |
|
748 |
|
749 ComplexNDArray& |
|
750 ComplexNDArray::insert (const ComplexNDArray& a, int r, int c) |
|
751 { |
|
752 Array<Complex>::insert (a, r, c); |
|
753 return *this; |
|
754 } |
|
755 |
4514
|
756 ComplexMatrix |
|
757 ComplexNDArray::matrix_value (void) const |
|
758 { |
|
759 ComplexMatrix retval; |
|
760 |
|
761 int nd = ndims (); |
|
762 |
|
763 switch (nd) |
|
764 { |
|
765 case 1: |
|
766 retval = ComplexMatrix (Array2<Complex> (*this, dimensions(0), 1)); |
|
767 break; |
|
768 |
|
769 case 2: |
|
770 retval = ComplexMatrix (Array2<Complex> (*this, dimensions(0), |
|
771 dimensions(1))); |
|
772 break; |
|
773 |
|
774 default: |
|
775 (*current_liboctave_error_handler) |
4770
|
776 ("invalid conversion of ComplexNDArray to ComplexMatrix"); |
4514
|
777 break; |
|
778 } |
|
779 |
|
780 return retval; |
|
781 } |
|
782 |
4532
|
783 void |
|
784 ComplexNDArray::increment_index (Array<int>& ra_idx, |
|
785 const dim_vector& dimensions, |
|
786 int start_dimension) |
|
787 { |
|
788 ::increment_index (ra_idx, dimensions, start_dimension); |
|
789 } |
|
790 |
4556
|
791 int |
|
792 ComplexNDArray::compute_index (Array<int>& ra_idx, |
|
793 const dim_vector& dimensions) |
|
794 { |
|
795 return ::compute_index (ra_idx, dimensions); |
|
796 } |
|
797 |
4687
|
798 |
|
799 // This contains no information on the array structure !!! |
|
800 std::ostream& |
|
801 operator << (std::ostream& os, const ComplexNDArray& a) |
|
802 { |
|
803 int nel = a.nelem (); |
|
804 |
|
805 for (int i = 0; i < nel; i++) |
|
806 { |
|
807 os << " "; |
|
808 octave_write_complex (os, a.elem (i)); |
|
809 os << "\n"; |
|
810 } |
|
811 return os; |
|
812 } |
|
813 |
|
814 std::istream& |
|
815 operator >> (std::istream& is, ComplexNDArray& a) |
|
816 { |
|
817 int nel = a.nelem (); |
|
818 |
|
819 if (nel < 1 ) |
|
820 is.clear (std::ios::badbit); |
|
821 else |
|
822 { |
|
823 Complex tmp; |
|
824 for (int i = 0; i < nel; i++) |
|
825 { |
|
826 tmp = octave_read_complex (is); |
|
827 if (is) |
|
828 a.elem (i) = tmp; |
|
829 else |
|
830 goto done; |
|
831 } |
|
832 } |
|
833 |
|
834 done: |
|
835 |
|
836 return is; |
|
837 } |
|
838 |
4543
|
839 NDS_CMP_OPS(ComplexNDArray, real, Complex, real) |
|
840 NDS_BOOL_OPS(ComplexNDArray, Complex, 0.0) |
|
841 |
|
842 SND_CMP_OPS(Complex, real, ComplexNDArray, real) |
|
843 SND_BOOL_OPS(Complex, ComplexNDArray, 0.0) |
|
844 |
|
845 NDND_CMP_OPS(ComplexNDArray, real, ComplexNDArray, real) |
|
846 NDND_BOOL_OPS(ComplexNDArray, ComplexNDArray, 0.0) |
|
847 |
4514
|
848 /* |
|
849 ;;; Local Variables: *** |
|
850 ;;; mode: C++ *** |
|
851 ;;; End: *** |
|
852 */ |