1993
|
1 // RowVector manipulations. |
458
|
2 /* |
|
3 |
2847
|
4 Copyright (C) 1996, 1997 John W. Eaton |
458
|
5 |
|
6 This file is part of Octave. |
|
7 |
|
8 Octave is free software; you can redistribute it and/or modify it |
|
9 under the terms of the GNU General Public License as published by the |
|
10 Free Software Foundation; either version 2, or (at your option) any |
|
11 later version. |
|
12 |
|
13 Octave is distributed in the hope that it will be useful, but WITHOUT |
|
14 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
|
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
|
16 for more details. |
|
17 |
|
18 You should have received a copy of the GNU General Public License |
|
19 along with Octave; see the file COPYING. If not, write to the Free |
1315
|
20 Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. |
458
|
21 |
|
22 */ |
|
23 |
|
24 #ifdef HAVE_CONFIG_H |
1192
|
25 #include <config.h> |
458
|
26 #endif |
|
27 |
3503
|
28 #include <iostream> |
458
|
29 |
4669
|
30 #include "Array-util.h" |
1847
|
31 #include "f77-fcn.h" |
1368
|
32 #include "lo-error.h" |
458
|
33 #include "mx-base.h" |
|
34 #include "mx-inlines.cc" |
1650
|
35 #include "oct-cmplx.h" |
458
|
36 |
|
37 // Fortran functions we call. |
|
38 |
|
39 extern "C" |
|
40 { |
4552
|
41 F77_RET_T |
|
42 F77_FUNC (zgemv, ZGEMV) (F77_CONST_CHAR_ARG_DECL, |
|
43 const int&, const int&, const Complex&, |
|
44 const Complex*, const int&, const Complex*, |
|
45 const int&, const Complex&, Complex*, const int& |
|
46 F77_CHAR_ARG_LEN_DECL); |
458
|
47 } |
|
48 |
1360
|
49 // Complex Row Vector class |
458
|
50 |
|
51 ComplexRowVector::ComplexRowVector (const RowVector& a) |
1214
|
52 : MArray<Complex> (a.length ()) |
458
|
53 { |
|
54 for (int i = 0; i < length (); i++) |
|
55 elem (i) = a.elem (i); |
|
56 } |
|
57 |
2386
|
58 bool |
458
|
59 ComplexRowVector::operator == (const ComplexRowVector& a) const |
|
60 { |
|
61 int len = length (); |
|
62 if (len != a.length ()) |
|
63 return 0; |
3769
|
64 return mx_inline_equal (data (), a.data (), len); |
458
|
65 } |
|
66 |
2386
|
67 bool |
458
|
68 ComplexRowVector::operator != (const ComplexRowVector& a) const |
|
69 { |
|
70 return !(*this == a); |
|
71 } |
|
72 |
|
73 // destructive insert/delete/reorder operations |
|
74 |
|
75 ComplexRowVector& |
|
76 ComplexRowVector::insert (const RowVector& a, int c) |
|
77 { |
|
78 int a_len = a.length (); |
4316
|
79 |
1699
|
80 if (c < 0 || c + a_len > length ()) |
458
|
81 { |
|
82 (*current_liboctave_error_handler) ("range error for insert"); |
|
83 return *this; |
|
84 } |
|
85 |
4316
|
86 if (a_len > 0) |
|
87 { |
|
88 make_unique (); |
|
89 |
|
90 for (int i = 0; i < a_len; i++) |
|
91 xelem (c+i) = a.elem (i); |
|
92 } |
458
|
93 |
|
94 return *this; |
|
95 } |
|
96 |
|
97 ComplexRowVector& |
|
98 ComplexRowVector::insert (const ComplexRowVector& a, int c) |
|
99 { |
|
100 int a_len = a.length (); |
4316
|
101 |
1699
|
102 if (c < 0 || c + a_len > length ()) |
458
|
103 { |
|
104 (*current_liboctave_error_handler) ("range error for insert"); |
|
105 return *this; |
|
106 } |
|
107 |
4316
|
108 if (a_len > 0) |
|
109 { |
|
110 make_unique (); |
|
111 |
|
112 for (int i = 0; i < a_len; i++) |
|
113 xelem (c+i) = a.elem (i); |
|
114 } |
458
|
115 |
|
116 return *this; |
|
117 } |
|
118 |
|
119 ComplexRowVector& |
|
120 ComplexRowVector::fill (double val) |
|
121 { |
|
122 int len = length (); |
4316
|
123 |
458
|
124 if (len > 0) |
4316
|
125 { |
|
126 make_unique (); |
|
127 |
|
128 for (int i = 0; i < len; i++) |
|
129 xelem (i) = val; |
|
130 } |
|
131 |
458
|
132 return *this; |
|
133 } |
|
134 |
|
135 ComplexRowVector& |
|
136 ComplexRowVector::fill (const Complex& val) |
|
137 { |
|
138 int len = length (); |
4316
|
139 |
458
|
140 if (len > 0) |
4316
|
141 { |
|
142 make_unique (); |
|
143 |
|
144 for (int i = 0; i < len; i++) |
|
145 xelem (i) = val; |
|
146 } |
|
147 |
458
|
148 return *this; |
|
149 } |
|
150 |
|
151 ComplexRowVector& |
|
152 ComplexRowVector::fill (double val, int c1, int c2) |
|
153 { |
|
154 int len = length (); |
4316
|
155 |
458
|
156 if (c1 < 0 || c2 < 0 || c1 >= len || c2 >= len) |
|
157 { |
|
158 (*current_liboctave_error_handler) ("range error for fill"); |
|
159 return *this; |
|
160 } |
|
161 |
|
162 if (c1 > c2) { int tmp = c1; c1 = c2; c2 = tmp; } |
|
163 |
4316
|
164 if (c2 >= c1) |
|
165 { |
|
166 make_unique (); |
|
167 |
|
168 for (int i = c1; i <= c2; i++) |
|
169 xelem (i) = val; |
|
170 } |
458
|
171 |
|
172 return *this; |
|
173 } |
|
174 |
|
175 ComplexRowVector& |
|
176 ComplexRowVector::fill (const Complex& val, int c1, int c2) |
|
177 { |
|
178 int len = length (); |
4316
|
179 |
458
|
180 if (c1 < 0 || c2 < 0 || c1 >= len || c2 >= len) |
|
181 { |
|
182 (*current_liboctave_error_handler) ("range error for fill"); |
|
183 return *this; |
|
184 } |
|
185 |
|
186 if (c1 > c2) { int tmp = c1; c1 = c2; c2 = tmp; } |
|
187 |
4316
|
188 if (c2 >= c1) |
|
189 { |
|
190 make_unique (); |
|
191 |
|
192 for (int i = c1; i <= c2; i++) |
|
193 xelem (i) = val; |
|
194 } |
458
|
195 |
|
196 return *this; |
|
197 } |
|
198 |
|
199 ComplexRowVector |
|
200 ComplexRowVector::append (const RowVector& a) const |
|
201 { |
|
202 int len = length (); |
|
203 int nc_insert = len; |
|
204 ComplexRowVector retval (len + a.length ()); |
|
205 retval.insert (*this, 0); |
|
206 retval.insert (a, nc_insert); |
|
207 return retval; |
|
208 } |
|
209 |
|
210 ComplexRowVector |
|
211 ComplexRowVector::append (const ComplexRowVector& a) const |
|
212 { |
|
213 int len = length (); |
|
214 int nc_insert = len; |
|
215 ComplexRowVector retval (len + a.length ()); |
|
216 retval.insert (*this, 0); |
|
217 retval.insert (a, nc_insert); |
|
218 return retval; |
|
219 } |
|
220 |
|
221 ComplexColumnVector |
|
222 ComplexRowVector::hermitian (void) const |
|
223 { |
|
224 int len = length (); |
3769
|
225 return ComplexColumnVector (mx_inline_conj_dup (data (), len), len); |
458
|
226 } |
|
227 |
|
228 ComplexColumnVector |
|
229 ComplexRowVector::transpose (void) const |
|
230 { |
1858
|
231 return ComplexColumnVector (*this); |
458
|
232 } |
|
233 |
|
234 ComplexRowVector |
|
235 conj (const ComplexRowVector& a) |
|
236 { |
|
237 int a_len = a.length (); |
|
238 ComplexRowVector retval; |
|
239 if (a_len > 0) |
3769
|
240 retval = ComplexRowVector (mx_inline_conj_dup (a.data (), a_len), a_len); |
458
|
241 return retval; |
|
242 } |
|
243 |
|
244 // resize is the destructive equivalent for this one |
|
245 |
|
246 ComplexRowVector |
|
247 ComplexRowVector::extract (int c1, int c2) const |
|
248 { |
|
249 if (c1 > c2) { int tmp = c1; c1 = c2; c2 = tmp; } |
|
250 |
|
251 int new_c = c2 - c1 + 1; |
|
252 |
|
253 ComplexRowVector result (new_c); |
|
254 |
|
255 for (int i = 0; i < new_c; i++) |
|
256 result.elem (i) = elem (c1+i); |
|
257 |
|
258 return result; |
|
259 } |
|
260 |
4316
|
261 ComplexRowVector |
|
262 ComplexRowVector::extract_n (int r1, int n) const |
|
263 { |
|
264 ComplexRowVector result (n); |
|
265 |
|
266 for (int i = 0; i < n; i++) |
|
267 result.elem (i) = elem (r1+i); |
|
268 |
|
269 return result; |
|
270 } |
|
271 |
458
|
272 // row vector by row vector -> row vector operations |
|
273 |
|
274 ComplexRowVector& |
|
275 ComplexRowVector::operator += (const RowVector& a) |
|
276 { |
|
277 int len = length (); |
2386
|
278 |
|
279 int a_len = a.length (); |
|
280 |
|
281 if (len != a_len) |
458
|
282 { |
2386
|
283 gripe_nonconformant ("operator +=", len, a_len); |
458
|
284 return *this; |
|
285 } |
|
286 |
|
287 if (len == 0) |
|
288 return *this; |
|
289 |
|
290 Complex *d = fortran_vec (); // Ensures only one reference to my privates! |
|
291 |
3769
|
292 mx_inline_add2 (d, a.data (), len); |
458
|
293 return *this; |
|
294 } |
|
295 |
|
296 ComplexRowVector& |
|
297 ComplexRowVector::operator -= (const RowVector& a) |
|
298 { |
|
299 int len = length (); |
2386
|
300 |
|
301 int a_len = a.length (); |
|
302 |
|
303 if (len != a_len) |
458
|
304 { |
2386
|
305 gripe_nonconformant ("operator -=", len, a_len); |
458
|
306 return *this; |
|
307 } |
|
308 |
|
309 if (len == 0) |
|
310 return *this; |
|
311 |
|
312 Complex *d = fortran_vec (); // Ensures only one reference to my privates! |
|
313 |
3769
|
314 mx_inline_subtract2 (d, a.data (), len); |
458
|
315 return *this; |
|
316 } |
|
317 |
|
318 // row vector by matrix -> row vector |
|
319 |
|
320 ComplexRowVector |
|
321 operator * (const ComplexRowVector& v, const ComplexMatrix& a) |
|
322 { |
1947
|
323 ComplexRowVector retval; |
|
324 |
458
|
325 int len = v.length (); |
1947
|
326 |
2386
|
327 int a_nr = a.rows (); |
|
328 int a_nc = a.cols (); |
|
329 |
|
330 if (a_nr != len) |
|
331 gripe_nonconformant ("operator *", 1, len, a_nr, a_nc); |
1947
|
332 else |
458
|
333 { |
1947
|
334 if (len == 0) |
|
335 retval.resize (a_nc, 0.0); |
|
336 else |
|
337 { |
|
338 // Transpose A to form A'*x == (x'*A)' |
|
339 |
|
340 int ld = a_nr; |
|
341 |
|
342 retval.resize (a_nc); |
|
343 Complex *y = retval.fortran_vec (); |
|
344 |
4552
|
345 F77_XFCN (zgemv, ZGEMV, (F77_CONST_CHAR_ARG2 ("T", 1), |
|
346 a_nr, a_nc, 1.0, a.data (), |
|
347 ld, v.data (), 1, 0.0, y, 1 |
|
348 F77_CHAR_ARG_LEN (1))); |
1947
|
349 |
|
350 if (f77_exception_encountered) |
|
351 (*current_liboctave_error_handler) |
|
352 ("unrecoverable error in zgemv"); |
|
353 } |
458
|
354 } |
|
355 |
1947
|
356 return retval; |
458
|
357 } |
|
358 |
1205
|
359 ComplexRowVector |
|
360 operator * (const RowVector& v, const ComplexMatrix& a) |
|
361 { |
|
362 ComplexRowVector tmp (v); |
|
363 return tmp * a; |
|
364 } |
|
365 |
458
|
366 // other operations |
|
367 |
|
368 ComplexRowVector |
2676
|
369 ComplexRowVector::map (c_c_Mapper f) const |
458
|
370 { |
2676
|
371 ComplexRowVector b (*this); |
|
372 return b.apply (f); |
458
|
373 } |
|
374 |
2676
|
375 RowVector |
|
376 ComplexRowVector::map (d_c_Mapper f) const |
458
|
377 { |
2676
|
378 const Complex *d = data (); |
|
379 |
|
380 int len = length (); |
|
381 |
|
382 RowVector retval (len); |
|
383 |
|
384 double *r = retval.fortran_vec (); |
|
385 |
|
386 for (int i = 0; i < len; i++) |
|
387 r[i] = f (d[i]); |
|
388 |
|
389 return retval; |
|
390 } |
|
391 |
|
392 ComplexRowVector& |
|
393 ComplexRowVector::apply (c_c_Mapper f) |
|
394 { |
|
395 Complex *d = fortran_vec (); // Ensures only one reference to my privates! |
|
396 |
458
|
397 for (int i = 0; i < length (); i++) |
2676
|
398 d[i] = f (d[i]); |
|
399 |
|
400 return *this; |
458
|
401 } |
|
402 |
|
403 Complex |
|
404 ComplexRowVector::min (void) const |
|
405 { |
|
406 int len = length (); |
|
407 if (len == 0) |
|
408 return Complex (0.0); |
|
409 |
|
410 Complex res = elem (0); |
|
411 double absres = abs (res); |
|
412 |
|
413 for (int i = 1; i < len; i++) |
|
414 if (abs (elem (i)) < absres) |
|
415 { |
|
416 res = elem (i); |
|
417 absres = abs (res); |
|
418 } |
|
419 |
|
420 return res; |
|
421 } |
|
422 |
|
423 Complex |
|
424 ComplexRowVector::max (void) const |
|
425 { |
|
426 int len = length (); |
|
427 if (len == 0) |
|
428 return Complex (0.0); |
|
429 |
|
430 Complex res = elem (0); |
|
431 double absres = abs (res); |
|
432 |
|
433 for (int i = 1; i < len; i++) |
|
434 if (abs (elem (i)) > absres) |
|
435 { |
|
436 res = elem (i); |
|
437 absres = abs (res); |
|
438 } |
|
439 |
|
440 return res; |
|
441 } |
|
442 |
|
443 // i/o |
|
444 |
3504
|
445 std::ostream& |
|
446 operator << (std::ostream& os, const ComplexRowVector& a) |
458
|
447 { |
|
448 // int field_width = os.precision () + 7; |
|
449 for (int i = 0; i < a.length (); i++) |
|
450 os << " " /* setw (field_width) */ << a.elem (i); |
|
451 return os; |
|
452 } |
|
453 |
3504
|
454 std::istream& |
|
455 operator >> (std::istream& is, ComplexRowVector& a) |
458
|
456 { |
|
457 int len = a.length(); |
|
458 |
|
459 if (len < 1) |
3504
|
460 is.clear (std::ios::badbit); |
458
|
461 else |
|
462 { |
|
463 Complex tmp; |
|
464 for (int i = 0; i < len; i++) |
|
465 { |
|
466 is >> tmp; |
|
467 if (is) |
|
468 a.elem (i) = tmp; |
|
469 else |
|
470 break; |
|
471 } |
|
472 } |
532
|
473 return is; |
458
|
474 } |
|
475 |
1205
|
476 // row vector by column vector -> scalar |
|
477 |
|
478 // row vector by column vector -> scalar |
|
479 |
|
480 Complex |
|
481 operator * (const ComplexRowVector& v, const ColumnVector& a) |
|
482 { |
|
483 ComplexColumnVector tmp (a); |
|
484 return v * tmp; |
|
485 } |
|
486 |
|
487 Complex |
|
488 operator * (const ComplexRowVector& v, const ComplexColumnVector& a) |
|
489 { |
|
490 int len = v.length (); |
2386
|
491 |
|
492 int a_len = a.length (); |
|
493 |
|
494 if (len != a_len) |
1205
|
495 { |
2386
|
496 gripe_nonconformant ("operator *", len, a_len); |
1205
|
497 return 0.0; |
|
498 } |
|
499 |
|
500 Complex retval (0.0, 0.0); |
|
501 |
|
502 for (int i = 0; i < len; i++) |
|
503 retval += v.elem (i) * a.elem (i); |
|
504 |
|
505 return retval; |
|
506 } |
|
507 |
|
508 // other operations |
|
509 |
|
510 ComplexRowVector |
|
511 linspace (const Complex& x1, const Complex& x2, int n) |
|
512 { |
|
513 ComplexRowVector retval; |
|
514 |
|
515 if (n > 0) |
|
516 { |
|
517 retval.resize (n); |
3092
|
518 Complex delta = (x2 - x1) / (n - 1.0); |
1205
|
519 retval.elem (0) = x1; |
|
520 for (int i = 1; i < n-1; i++) |
3092
|
521 retval.elem (i) = x1 + 1.0 * i * delta; |
1205
|
522 retval.elem (n-1) = x2; |
|
523 } |
3322
|
524 else if (n == 1) |
|
525 { |
|
526 if (x1 == x2) |
|
527 { |
|
528 retval.resize (1); |
|
529 retval.elem (0) = x1; |
|
530 } |
|
531 else |
|
532 (*current_liboctave_error_handler) |
|
533 ("linspace: npoints is 1, but x1 != x2"); |
|
534 } |
|
535 else |
|
536 (*current_liboctave_error_handler) |
|
537 ("linspace: npoints must be greater than 0"); |
1205
|
538 |
|
539 return retval; |
|
540 } |
|
541 |
458
|
542 /* |
|
543 ;;; Local Variables: *** |
|
544 ;;; mode: C++ *** |
|
545 ;;; End: *** |
|
546 */ |