1993
|
1 // Template array classes |
237
|
2 /* |
|
3 |
2847
|
4 Copyright (C) 1996, 1997 John W. Eaton |
237
|
5 |
|
6 This file is part of Octave. |
|
7 |
|
8 Octave is free software; you can redistribute it and/or modify it |
|
9 under the terms of the GNU General Public License as published by the |
|
10 Free Software Foundation; either version 2, or (at your option) any |
|
11 later version. |
|
12 |
|
13 Octave is distributed in the hope that it will be useful, but WITHOUT |
|
14 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
|
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
|
16 for more details. |
|
17 |
|
18 You should have received a copy of the GNU General Public License |
|
19 along with Octave; see the file COPYING. If not, write to the Free |
1315
|
20 Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. |
237
|
21 |
|
22 */ |
|
23 |
|
24 #ifdef HAVE_CONFIG_H |
1192
|
25 #include <config.h> |
237
|
26 #endif |
|
27 |
1367
|
28 #include <cassert> |
4518
|
29 #include <climits> |
449
|
30 |
3503
|
31 #include <iostream> |
1560
|
32 |
237
|
33 #include "Array.h" |
4517
|
34 #include "Array-flags.h" |
4588
|
35 #include "Array-util.h" |
4517
|
36 #include "Range.h" |
1560
|
37 #include "idx-vector.h" |
|
38 #include "lo-error.h" |
4661
|
39 #include "lo-sstream.h" |
1560
|
40 |
1360
|
41 // One dimensional array class. Handles the reference counting for |
|
42 // all the derived classes. |
237
|
43 |
|
44 template <class T> |
4834
|
45 Array<T>::Array (const Array<T>& a, const dim_vector& dv) |
|
46 : rep (a.rep), dimensions (dv), idx (0), idx_count (0) |
|
47 { |
|
48 rep->count++; |
|
49 |
|
50 if (a.numel () < dv.numel ()) |
|
51 (*current_liboctave_error_handler) |
|
52 ("Array::Array (const Array&, const dim_vector&): dimension mismatch"); |
|
53 } |
|
54 |
|
55 template <class T> |
1619
|
56 Array<T>::~Array (void) |
|
57 { |
|
58 if (--rep->count <= 0) |
|
59 delete rep; |
|
60 |
|
61 delete [] idx; |
4513
|
62 } |
|
63 |
4532
|
64 template <class T> |
|
65 Array<T> |
|
66 Array<T>::squeeze (void) const |
|
67 { |
|
68 Array<T> retval = *this; |
|
69 |
4929
|
70 if (ndims () > 2) |
4532
|
71 { |
4929
|
72 bool dims_changed = false; |
|
73 |
|
74 dim_vector new_dimensions = dimensions; |
|
75 |
|
76 int k = 0; |
|
77 |
|
78 for (int i = 0; i < ndims (); i++) |
4759
|
79 { |
4929
|
80 if (dimensions(i) == 1) |
|
81 dims_changed = true; |
|
82 else |
|
83 new_dimensions(k++) = dimensions(i); |
|
84 } |
|
85 |
|
86 if (dims_changed) |
|
87 { |
|
88 switch (k) |
|
89 { |
|
90 case 0: |
|
91 new_dimensions = dim_vector (1, 1); |
|
92 break; |
|
93 |
|
94 case 1: |
4759
|
95 { |
5275
|
96 octave_idx_type tmp = new_dimensions(0); |
4929
|
97 |
|
98 new_dimensions.resize (2); |
|
99 |
4759
|
100 new_dimensions(0) = tmp; |
|
101 new_dimensions(1) = 1; |
|
102 } |
4929
|
103 break; |
|
104 |
|
105 default: |
|
106 new_dimensions.resize (k); |
|
107 break; |
|
108 } |
4759
|
109 } |
4532
|
110 |
5047
|
111 // XXX FIXME XXX -- it would be better if we did not have to do |
|
112 // this, so we could share the data while still having different |
|
113 // dimension vectors. |
|
114 |
4532
|
115 retval.make_unique (); |
|
116 |
|
117 retval.dimensions = new_dimensions; |
|
118 } |
|
119 |
|
120 return retval; |
|
121 } |
|
122 |
4513
|
123 // A guess (should be quite conservative). |
|
124 #define MALLOC_OVERHEAD 1024 |
|
125 |
|
126 template <class T> |
5275
|
127 octave_idx_type |
|
128 Array<T>::get_size (octave_idx_type r, octave_idx_type c) |
4513
|
129 { |
|
130 // XXX KLUGE XXX |
|
131 |
|
132 // If an allocation of an array with r * c elements of type T |
|
133 // would cause an overflow in the allocator when computing the |
|
134 // size of the allocation, then return a value which, although |
|
135 // not equivalent to the actual request, should be too large for |
|
136 // most current hardware, but not so large to cause the |
|
137 // allocator to barf on computing retval * sizeof (T). |
|
138 |
|
139 static int nl; |
|
140 static double dl |
5275
|
141 = frexp (static_cast<double> |
|
142 (std::numeric_limits<octave_idx_type>::max() - MALLOC_OVERHEAD) / sizeof (T), &nl); |
4513
|
143 |
|
144 // This value should be an integer. If we return this value and |
|
145 // things work the way we expect, we should be paying a visit to |
|
146 // new_handler in no time flat. |
5275
|
147 static octave_idx_type max_items = static_cast<octave_idx_type> (ldexp (dl, nl)); // = dl.2^nl |
4513
|
148 |
|
149 int nr, nc; |
5275
|
150 double dr = frexp (static_cast<double> (r), &nr); // r = dr * 2^nr |
|
151 double dc = frexp (static_cast<double> (c), &nc); // c = dc * 2^nc |
4513
|
152 |
|
153 int nt = nr + nc; |
|
154 double dt = dr * dc; |
|
155 |
4532
|
156 if (dt < 0.5) |
4513
|
157 { |
|
158 nt--; |
|
159 dt *= 2; |
|
160 } |
|
161 |
5275
|
162 // if (r*c) below limit, then return r*c, otherwise return TOO BIG num! |
4513
|
163 return (nt < nl || (nt == nl && dt < dl)) ? r * c : max_items; |
237
|
164 } |
|
165 |
|
166 template <class T> |
5275
|
167 octave_idx_type |
|
168 Array<T>::get_size (octave_idx_type r, octave_idx_type c, octave_idx_type p) |
237
|
169 { |
4513
|
170 // XXX KLUGE XXX |
|
171 |
|
172 // If an allocation of an array with r * c * p elements of type T |
|
173 // would cause an overflow in the allocator when computing the |
|
174 // size of the allocation, then return a value which, although |
|
175 // not equivalent to the actual request, should be too large for |
|
176 // most current hardware, but not so large to cause the |
|
177 // allocator to barf on computing retval * sizeof (T). |
|
178 |
|
179 static int nl; |
|
180 static double dl |
|
181 = frexp (static_cast<double> |
5275
|
182 (std::numeric_limits<octave_idx_type>::max() - MALLOC_OVERHEAD) / sizeof (T), &nl); |
4513
|
183 |
|
184 // This value should be an integer. If we return this value and |
|
185 // things work the way we expect, we should be paying a visit to |
|
186 // new_handler in no time flat. |
5275
|
187 static octave_idx_type max_items = static_cast<octave_idx_type> (ldexp (dl, nl)); |
4513
|
188 |
|
189 int nr, nc, np; |
|
190 double dr = frexp (static_cast<double> (r), &nr); |
|
191 double dc = frexp (static_cast<double> (c), &nc); |
|
192 double dp = frexp (static_cast<double> (p), &np); |
|
193 |
|
194 int nt = nr + nc + np; |
|
195 double dt = dr * dc * dp; |
|
196 |
4532
|
197 if (dt < 0.5) |
659
|
198 { |
4513
|
199 nt--; |
|
200 dt *= 2; |
237
|
201 |
4532
|
202 if (dt < 0.5) |
|
203 { |
|
204 nt--; |
|
205 dt *= 2; |
|
206 } |
659
|
207 } |
1619
|
208 |
4513
|
209 return (nt < nl || (nt == nl && dt < dl)) ? r * c * p : max_items; |
237
|
210 } |
|
211 |
|
212 template <class T> |
5275
|
213 octave_idx_type |
4513
|
214 Array<T>::get_size (const dim_vector& ra_idx) |
237
|
215 { |
4513
|
216 // XXX KLUGE XXX |
|
217 |
|
218 // If an allocation of an array with r * c elements of type T |
|
219 // would cause an overflow in the allocator when computing the |
|
220 // size of the allocation, then return a value which, although |
|
221 // not equivalent to the actual request, should be too large for |
|
222 // most current hardware, but not so large to cause the |
|
223 // allocator to barf on computing retval * sizeof (T). |
|
224 |
|
225 static int nl; |
|
226 static double dl |
|
227 = frexp (static_cast<double> |
5275
|
228 (std::numeric_limits<octave_idx_type>::max() - MALLOC_OVERHEAD) / sizeof (T), &nl); |
4513
|
229 |
|
230 // This value should be an integer. If we return this value and |
|
231 // things work the way we expect, we should be paying a visit to |
|
232 // new_handler in no time flat. |
|
233 |
5275
|
234 static octave_idx_type max_items = static_cast<octave_idx_type> (ldexp (dl, nl)); |
|
235 |
|
236 octave_idx_type retval = max_items; |
4513
|
237 |
|
238 int n = ra_idx.length (); |
|
239 |
|
240 int nt = 0; |
|
241 double dt = 1; |
|
242 |
|
243 for (int i = 0; i < n; i++) |
237
|
244 { |
4513
|
245 int nra_idx; |
|
246 double dra_idx = frexp (static_cast<double> (ra_idx(i)), &nra_idx); |
|
247 |
|
248 nt += nra_idx; |
|
249 dt *= dra_idx; |
4532
|
250 |
|
251 if (dt < 0.5) |
|
252 { |
|
253 nt--; |
|
254 dt *= 2; |
|
255 } |
237
|
256 } |
|
257 |
4513
|
258 if (nt < nl || (nt == nl && dt < dl)) |
|
259 { |
|
260 retval = 1; |
|
261 |
|
262 for (int i = 0; i < n; i++) |
|
263 retval *= ra_idx(i); |
|
264 } |
|
265 |
|
266 return retval; |
237
|
267 } |
|
268 |
4513
|
269 #undef MALLOC_OVERHEAD |
|
270 |
237
|
271 template <class T> |
5275
|
272 octave_idx_type |
|
273 Array<T>::compute_index (const Array<octave_idx_type>& ra_idx) const |
237
|
274 { |
5275
|
275 octave_idx_type retval = -1; |
4513
|
276 |
|
277 int n = dimensions.length (); |
|
278 |
|
279 if (n > 0 && n == ra_idx.length ()) |
237
|
280 { |
4513
|
281 retval = ra_idx(--n); |
237
|
282 |
4513
|
283 while (--n >= 0) |
|
284 { |
|
285 retval *= dimensions(n); |
|
286 retval += ra_idx(n); |
|
287 } |
|
288 } |
|
289 else |
|
290 (*current_liboctave_error_handler) |
|
291 ("Array<T>::compute_index: invalid ra_idxing operation"); |
237
|
292 |
4513
|
293 return retval; |
237
|
294 } |
|
295 |
2049
|
296 template <class T> |
|
297 T |
5275
|
298 Array<T>::range_error (const char *fcn, octave_idx_type n) const |
2049
|
299 { |
2109
|
300 (*current_liboctave_error_handler) ("%s (%d): range error", fcn, n); |
2049
|
301 return T (); |
|
302 } |
|
303 |
|
304 template <class T> |
|
305 T& |
5275
|
306 Array<T>::range_error (const char *fcn, octave_idx_type n) |
2049
|
307 { |
2109
|
308 (*current_liboctave_error_handler) ("%s (%d): range error", fcn, n); |
2049
|
309 static T foo; |
|
310 return foo; |
|
311 } |
|
312 |
3933
|
313 template <class T> |
4513
|
314 T |
5275
|
315 Array<T>::range_error (const char *fcn, octave_idx_type i, octave_idx_type j) const |
4513
|
316 { |
|
317 (*current_liboctave_error_handler) |
|
318 ("%s (%d, %d): range error", fcn, i, j); |
|
319 return T (); |
|
320 } |
|
321 |
|
322 template <class T> |
|
323 T& |
5275
|
324 Array<T>::range_error (const char *fcn, octave_idx_type i, octave_idx_type j) |
4513
|
325 { |
|
326 (*current_liboctave_error_handler) |
|
327 ("%s (%d, %d): range error", fcn, i, j); |
|
328 static T foo; |
|
329 return foo; |
|
330 } |
|
331 |
|
332 template <class T> |
|
333 T |
5275
|
334 Array<T>::range_error (const char *fcn, octave_idx_type i, octave_idx_type j, octave_idx_type k) const |
4513
|
335 { |
|
336 (*current_liboctave_error_handler) |
|
337 ("%s (%d, %d, %d): range error", fcn, i, j, k); |
|
338 return T (); |
|
339 } |
|
340 |
|
341 template <class T> |
|
342 T& |
5275
|
343 Array<T>::range_error (const char *fcn, octave_idx_type i, octave_idx_type j, octave_idx_type k) |
4513
|
344 { |
|
345 (*current_liboctave_error_handler) |
|
346 ("%s (%d, %d, %d): range error", fcn, i, j, k); |
|
347 static T foo; |
|
348 return foo; |
|
349 } |
|
350 |
|
351 template <class T> |
|
352 T |
|
353 Array<T>::range_error (const char *fcn, const Array<int>& ra_idx) const |
|
354 { |
4661
|
355 OSSTREAM buf; |
|
356 |
|
357 buf << fcn << " ("; |
|
358 |
5275
|
359 octave_idx_type n = ra_idx.length (); |
4661
|
360 |
|
361 if (n > 0) |
|
362 buf << ra_idx(0); |
|
363 |
5275
|
364 for (octave_idx_type i = 1; i < n; i++) |
4661
|
365 buf << ", " << ra_idx(i); |
|
366 |
|
367 buf << "): range error"; |
|
368 |
|
369 buf << OSSTREAM_ENDS; |
|
370 |
|
371 (*current_liboctave_error_handler) (OSSTREAM_C_STR (buf)); |
|
372 |
|
373 OSSTREAM_FREEZE (buf); |
4513
|
374 |
|
375 return T (); |
|
376 } |
|
377 |
|
378 template <class T> |
|
379 T& |
|
380 Array<T>::range_error (const char *fcn, const Array<int>& ra_idx) |
|
381 { |
4661
|
382 OSSTREAM buf; |
|
383 |
|
384 buf << fcn << " ("; |
|
385 |
5275
|
386 octave_idx_type n = ra_idx.length (); |
4661
|
387 |
|
388 if (n > 0) |
|
389 buf << ra_idx(0); |
|
390 |
5275
|
391 for (octave_idx_type i = 1; i < n; i++) |
4661
|
392 buf << ", " << ra_idx(i); |
|
393 |
|
394 buf << "): range error"; |
|
395 |
|
396 buf << OSSTREAM_ENDS; |
|
397 |
|
398 (*current_liboctave_error_handler) (OSSTREAM_C_STR (buf)); |
|
399 |
|
400 OSSTREAM_FREEZE (buf); |
4513
|
401 |
|
402 static T foo; |
|
403 return foo; |
|
404 } |
|
405 |
|
406 template <class T> |
4567
|
407 Array<T> |
|
408 Array<T>::reshape (const dim_vector& new_dims) const |
|
409 { |
|
410 Array<T> retval; |
|
411 |
|
412 if (dimensions != new_dims) |
|
413 { |
|
414 if (dimensions.numel () == new_dims.numel ()) |
|
415 retval = Array<T> (*this, new_dims); |
|
416 else |
|
417 (*current_liboctave_error_handler) ("reshape: size mismatch"); |
|
418 } |
4916
|
419 else |
|
420 retval = *this; |
4567
|
421 |
|
422 return retval; |
|
423 } |
|
424 |
|
425 template <class T> |
4593
|
426 Array<T> |
5275
|
427 Array<T>::permute (const Array<octave_idx_type>& perm_vec, bool inv) const |
4593
|
428 { |
|
429 Array<T> retval; |
|
430 |
|
431 dim_vector dv = dims (); |
|
432 dim_vector dv_new; |
|
433 |
5148
|
434 int perm_vec_len = perm_vec.length (); |
|
435 |
|
436 if (perm_vec_len < dv.length ()) |
|
437 (*current_liboctave_error_handler) |
|
438 ("%s: invalid permutation vector", inv ? "ipermute" : "permute"); |
|
439 |
|
440 dv_new.resize (perm_vec_len); |
|
441 |
|
442 // Append singleton dimensions as needed. |
|
443 dv.resize (perm_vec_len, 1); |
|
444 |
|
445 const Array<T> tmp = reshape (dv); |
4593
|
446 |
|
447 // Need this array to check for identical elements in permutation array. |
5148
|
448 Array<bool> checked (perm_vec_len, false); |
4593
|
449 |
|
450 // Find dimension vector of permuted array. |
5148
|
451 for (int i = 0; i < perm_vec_len; i++) |
4593
|
452 { |
5275
|
453 octave_idx_type perm_elt = perm_vec.elem (i); |
5148
|
454 |
|
455 if (perm_elt >= perm_vec_len || perm_elt < 0) |
4593
|
456 { |
|
457 (*current_liboctave_error_handler) |
5148
|
458 ("%s: permutation vector contains an invalid element", |
|
459 inv ? "ipermute" : "permute"); |
4593
|
460 |
|
461 return retval; |
|
462 } |
|
463 |
5148
|
464 if (checked.elem(perm_elt)) |
4593
|
465 { |
|
466 (*current_liboctave_error_handler) |
5148
|
467 ("%s: permutation vector cannot contain identical elements", |
|
468 inv ? "ipermute" : "permute"); |
4593
|
469 |
|
470 return retval; |
|
471 } |
|
472 else |
5148
|
473 checked.elem(perm_elt) = true; |
|
474 |
|
475 dv_new(i) = dv(perm_elt); |
4593
|
476 } |
|
477 |
|
478 retval.resize (dv_new); |
|
479 |
|
480 // Index array to the original array. |
5275
|
481 Array<octave_idx_type> old_idx (perm_vec_len, 0); |
4593
|
482 |
|
483 // Number of elements in Array (should be the same for |
|
484 // both the permuted array and original array). |
5275
|
485 octave_idx_type n = retval.length (); |
4593
|
486 |
|
487 // Permute array. |
5275
|
488 for (octave_idx_type i = 0; i < n; i++) |
4593
|
489 { |
|
490 // Get the idx of permuted array. |
5275
|
491 Array<octave_idx_type> new_idx = calc_permutated_idx (old_idx, perm_vec, inv); |
4593
|
492 |
5148
|
493 retval.elem (new_idx) = tmp.elem (old_idx); |
4593
|
494 |
|
495 increment_index (old_idx, dv); |
|
496 } |
|
497 |
|
498 return retval; |
|
499 } |
|
500 |
|
501 template <class T> |
4513
|
502 void |
5275
|
503 Array<T>::resize_no_fill (octave_idx_type n) |
4513
|
504 { |
|
505 if (n < 0) |
|
506 { |
|
507 (*current_liboctave_error_handler) |
|
508 ("can't resize to negative dimension"); |
|
509 return; |
|
510 } |
|
511 |
|
512 if (n == length ()) |
|
513 return; |
|
514 |
|
515 typename Array<T>::ArrayRep *old_rep = rep; |
|
516 const T *old_data = data (); |
5275
|
517 octave_idx_type old_len = length (); |
4513
|
518 |
|
519 rep = new typename Array<T>::ArrayRep (n); |
|
520 |
|
521 dimensions = dim_vector (n); |
|
522 |
4747
|
523 if (n > 0 && old_data && old_len > 0) |
4513
|
524 { |
5275
|
525 octave_idx_type min_len = old_len < n ? old_len : n; |
|
526 |
|
527 for (octave_idx_type i = 0; i < min_len; i++) |
4513
|
528 xelem (i) = old_data[i]; |
|
529 } |
|
530 |
|
531 if (--old_rep->count <= 0) |
|
532 delete old_rep; |
|
533 } |
|
534 |
|
535 template <class T> |
|
536 void |
4587
|
537 Array<T>::resize_no_fill (const dim_vector& dv) |
4513
|
538 { |
5275
|
539 octave_idx_type n = dv.length (); |
|
540 |
|
541 for (octave_idx_type i = 0; i < n; i++) |
4513
|
542 { |
4587
|
543 if (dv(i) < 0) |
4513
|
544 { |
|
545 (*current_liboctave_error_handler) |
|
546 ("can't resize to negative dimension"); |
|
547 return; |
|
548 } |
|
549 } |
|
550 |
4548
|
551 bool same_size = true; |
|
552 |
|
553 if (dimensions.length () != n) |
|
554 { |
|
555 same_size = false; |
|
556 } |
|
557 else |
4513
|
558 { |
5275
|
559 for (octave_idx_type i = 0; i < n; i++) |
4513
|
560 { |
4587
|
561 if (dv(i) != dimensions(i)) |
4548
|
562 { |
|
563 same_size = false; |
|
564 break; |
|
565 } |
4513
|
566 } |
|
567 } |
|
568 |
4548
|
569 if (same_size) |
4513
|
570 return; |
|
571 |
|
572 typename Array<T>::ArrayRep *old_rep = rep; |
|
573 const T *old_data = data (); |
|
574 |
5275
|
575 octave_idx_type ts = get_size (dv); |
4747
|
576 |
|
577 rep = new typename Array<T>::ArrayRep (ts); |
4587
|
578 |
4870
|
579 dim_vector dv_old = dimensions; |
5275
|
580 octave_idx_type dv_old_orig_len = dv_old.length (); |
4587
|
581 dimensions = dv; |
5275
|
582 octave_idx_type ts_old = get_size (dv_old); |
4915
|
583 |
|
584 if (ts > 0 && ts_old > 0 && dv_old_orig_len > 0) |
4513
|
585 { |
5275
|
586 Array<octave_idx_type> ra_idx (dimensions.length (), 0); |
4747
|
587 |
4870
|
588 if (n > dv_old_orig_len) |
4747
|
589 { |
4870
|
590 dv_old.resize (n); |
|
591 |
5275
|
592 for (octave_idx_type i = dv_old_orig_len; i < n; i++) |
4870
|
593 dv_old.elem (i) = 1; |
|
594 } |
|
595 |
5275
|
596 for (octave_idx_type i = 0; i < ts; i++) |
4870
|
597 { |
|
598 if (index_in_bounds (ra_idx, dv_old)) |
|
599 rep->elem (i) = old_data[get_scalar_idx (ra_idx, dv_old)]; |
4747
|
600 |
|
601 increment_index (ra_idx, dimensions); |
|
602 } |
4513
|
603 } |
|
604 |
|
605 if (--old_rep->count <= 0) |
|
606 delete old_rep; |
|
607 } |
|
608 |
|
609 template <class T> |
|
610 void |
5275
|
611 Array<T>::resize_no_fill (octave_idx_type r, octave_idx_type c) |
4513
|
612 { |
|
613 if (r < 0 || c < 0) |
|
614 { |
|
615 (*current_liboctave_error_handler) |
|
616 ("can't resize to negative dimension"); |
|
617 return; |
|
618 } |
|
619 |
4548
|
620 int n = ndims (); |
|
621 |
|
622 if (n == 0) |
|
623 dimensions = dim_vector (0, 0); |
|
624 |
|
625 assert (ndims () == 2); |
|
626 |
4513
|
627 if (r == dim1 () && c == dim2 ()) |
|
628 return; |
|
629 |
|
630 typename Array<T>::ArrayRep *old_rep = Array<T>::rep; |
|
631 const T *old_data = data (); |
|
632 |
5275
|
633 octave_idx_type old_d1 = dim1 (); |
|
634 octave_idx_type old_d2 = dim2 (); |
|
635 octave_idx_type old_len = length (); |
|
636 |
|
637 octave_idx_type ts = get_size (r, c); |
4747
|
638 |
|
639 rep = new typename Array<T>::ArrayRep (ts); |
4513
|
640 |
|
641 dimensions = dim_vector (r, c); |
|
642 |
4747
|
643 if (ts > 0 && old_data && old_len > 0) |
4513
|
644 { |
5275
|
645 octave_idx_type min_r = old_d1 < r ? old_d1 : r; |
|
646 octave_idx_type min_c = old_d2 < c ? old_d2 : c; |
|
647 |
|
648 for (octave_idx_type j = 0; j < min_c; j++) |
|
649 for (octave_idx_type i = 0; i < min_r; i++) |
4513
|
650 xelem (i, j) = old_data[old_d1*j+i]; |
|
651 } |
|
652 |
|
653 if (--old_rep->count <= 0) |
|
654 delete old_rep; |
|
655 } |
|
656 |
|
657 template <class T> |
|
658 void |
5275
|
659 Array<T>::resize_no_fill (octave_idx_type r, octave_idx_type c, octave_idx_type p) |
4513
|
660 { |
|
661 if (r < 0 || c < 0 || p < 0) |
|
662 { |
|
663 (*current_liboctave_error_handler) |
|
664 ("can't resize to negative dimension"); |
|
665 return; |
|
666 } |
|
667 |
4548
|
668 int n = ndims (); |
|
669 |
|
670 if (n == 0) |
|
671 dimensions = dim_vector (0, 0, 0); |
|
672 |
|
673 assert (ndims () == 3); |
|
674 |
4513
|
675 if (r == dim1 () && c == dim2 () && p == dim3 ()) |
|
676 return; |
|
677 |
|
678 typename Array<T>::ArrayRep *old_rep = rep; |
|
679 const T *old_data = data (); |
|
680 |
5275
|
681 octave_idx_type old_d1 = dim1 (); |
|
682 octave_idx_type old_d2 = dim2 (); |
|
683 octave_idx_type old_d3 = dim3 (); |
|
684 octave_idx_type old_len = length (); |
|
685 |
|
686 octave_idx_type ts = get_size (get_size (r, c), p); |
4513
|
687 |
|
688 rep = new typename Array<T>::ArrayRep (ts); |
|
689 |
|
690 dimensions = dim_vector (r, c, p); |
|
691 |
4747
|
692 if (ts > 0 && old_data && old_len > 0) |
4513
|
693 { |
5275
|
694 octave_idx_type min_r = old_d1 < r ? old_d1 : r; |
|
695 octave_idx_type min_c = old_d2 < c ? old_d2 : c; |
|
696 octave_idx_type min_p = old_d3 < p ? old_d3 : p; |
|
697 |
|
698 for (octave_idx_type k = 0; k < min_p; k++) |
|
699 for (octave_idx_type j = 0; j < min_c; j++) |
|
700 for (octave_idx_type i = 0; i < min_r; i++) |
4513
|
701 xelem (i, j, k) = old_data[old_d1*(old_d2*k+j)+i]; |
|
702 } |
|
703 |
|
704 if (--old_rep->count <= 0) |
|
705 delete old_rep; |
|
706 } |
|
707 |
|
708 template <class T> |
|
709 void |
5275
|
710 Array<T>::resize_and_fill (octave_idx_type n, const T& val) |
4513
|
711 { |
|
712 if (n < 0) |
|
713 { |
|
714 (*current_liboctave_error_handler) |
|
715 ("can't resize to negative dimension"); |
|
716 return; |
|
717 } |
|
718 |
|
719 if (n == length ()) |
|
720 return; |
|
721 |
|
722 typename Array<T>::ArrayRep *old_rep = rep; |
|
723 const T *old_data = data (); |
5275
|
724 octave_idx_type old_len = length (); |
4513
|
725 |
|
726 rep = new typename Array<T>::ArrayRep (n); |
|
727 |
|
728 dimensions = dim_vector (n); |
|
729 |
4747
|
730 if (n > 0) |
4513
|
731 { |
5275
|
732 octave_idx_type min_len = old_len < n ? old_len : n; |
4747
|
733 |
|
734 if (old_data && old_len > 0) |
|
735 { |
5275
|
736 for (octave_idx_type i = 0; i < min_len; i++) |
4747
|
737 xelem (i) = old_data[i]; |
|
738 } |
|
739 |
5275
|
740 for (octave_idx_type i = old_len; i < n; i++) |
4747
|
741 xelem (i) = val; |
4513
|
742 } |
|
743 |
|
744 if (--old_rep->count <= 0) |
|
745 delete old_rep; |
|
746 } |
|
747 |
|
748 template <class T> |
|
749 void |
5275
|
750 Array<T>::resize_and_fill (octave_idx_type r, octave_idx_type c, const T& val) |
4513
|
751 { |
|
752 if (r < 0 || c < 0) |
|
753 { |
|
754 (*current_liboctave_error_handler) |
|
755 ("can't resize to negative dimension"); |
|
756 return; |
|
757 } |
|
758 |
4548
|
759 if (ndims () == 0) |
|
760 dimensions = dim_vector (0, 0); |
|
761 |
|
762 assert (ndims () == 2); |
|
763 |
4513
|
764 if (r == dim1 () && c == dim2 ()) |
|
765 return; |
|
766 |
|
767 typename Array<T>::ArrayRep *old_rep = Array<T>::rep; |
|
768 const T *old_data = data (); |
|
769 |
5275
|
770 octave_idx_type old_d1 = dim1 (); |
|
771 octave_idx_type old_d2 = dim2 (); |
|
772 octave_idx_type old_len = length (); |
|
773 |
|
774 octave_idx_type ts = get_size (r, c); |
4747
|
775 |
|
776 rep = new typename Array<T>::ArrayRep (ts); |
4513
|
777 |
|
778 dimensions = dim_vector (r, c); |
|
779 |
4747
|
780 if (ts > 0) |
4513
|
781 { |
5275
|
782 octave_idx_type min_r = old_d1 < r ? old_d1 : r; |
|
783 octave_idx_type min_c = old_d2 < c ? old_d2 : c; |
4747
|
784 |
|
785 if (old_data && old_len > 0) |
|
786 { |
5275
|
787 for (octave_idx_type j = 0; j < min_c; j++) |
|
788 for (octave_idx_type i = 0; i < min_r; i++) |
4747
|
789 xelem (i, j) = old_data[old_d1*j+i]; |
|
790 } |
|
791 |
5275
|
792 for (octave_idx_type j = 0; j < min_c; j++) |
|
793 for (octave_idx_type i = min_r; i < r; i++) |
4747
|
794 xelem (i, j) = val; |
|
795 |
5275
|
796 for (octave_idx_type j = min_c; j < c; j++) |
|
797 for (octave_idx_type i = 0; i < r; i++) |
4747
|
798 xelem (i, j) = val; |
4513
|
799 } |
|
800 |
|
801 if (--old_rep->count <= 0) |
|
802 delete old_rep; |
|
803 } |
|
804 |
|
805 template <class T> |
|
806 void |
5275
|
807 Array<T>::resize_and_fill (octave_idx_type r, octave_idx_type c, octave_idx_type p, const T& val) |
4513
|
808 { |
|
809 if (r < 0 || c < 0 || p < 0) |
|
810 { |
|
811 (*current_liboctave_error_handler) |
|
812 ("can't resize to negative dimension"); |
|
813 return; |
|
814 } |
|
815 |
4548
|
816 if (ndims () == 0) |
|
817 dimensions = dim_vector (0, 0, 0); |
|
818 |
|
819 assert (ndims () == 3); |
|
820 |
4513
|
821 if (r == dim1 () && c == dim2 () && p == dim3 ()) |
|
822 return; |
|
823 |
|
824 typename Array<T>::ArrayRep *old_rep = rep; |
|
825 const T *old_data = data (); |
|
826 |
5275
|
827 octave_idx_type old_d1 = dim1 (); |
|
828 octave_idx_type old_d2 = dim2 (); |
|
829 octave_idx_type old_d3 = dim3 (); |
|
830 |
|
831 octave_idx_type old_len = length (); |
|
832 |
|
833 octave_idx_type ts = get_size (get_size (r, c), p); |
4513
|
834 |
|
835 rep = new typename Array<T>::ArrayRep (ts); |
|
836 |
|
837 dimensions = dim_vector (r, c, p); |
|
838 |
4747
|
839 if (ts > 0) |
|
840 { |
5275
|
841 octave_idx_type min_r = old_d1 < r ? old_d1 : r; |
|
842 octave_idx_type min_c = old_d2 < c ? old_d2 : c; |
|
843 octave_idx_type min_p = old_d3 < p ? old_d3 : p; |
4747
|
844 |
|
845 if (old_data && old_len > 0) |
5275
|
846 for (octave_idx_type k = 0; k < min_p; k++) |
|
847 for (octave_idx_type j = 0; j < min_c; j++) |
|
848 for (octave_idx_type i = 0; i < min_r; i++) |
4747
|
849 xelem (i, j, k) = old_data[old_d1*(old_d2*k+j)+i]; |
|
850 |
|
851 // XXX FIXME XXX -- if the copy constructor is expensive, this |
|
852 // may win. Otherwise, it may make more sense to just copy the |
|
853 // value everywhere when making the new ArrayRep. |
|
854 |
5275
|
855 for (octave_idx_type k = 0; k < min_p; k++) |
|
856 for (octave_idx_type j = min_c; j < c; j++) |
|
857 for (octave_idx_type i = 0; i < min_r; i++) |
4747
|
858 xelem (i, j, k) = val; |
|
859 |
5275
|
860 for (octave_idx_type k = 0; k < min_p; k++) |
|
861 for (octave_idx_type j = 0; j < c; j++) |
|
862 for (octave_idx_type i = min_r; i < r; i++) |
4747
|
863 xelem (i, j, k) = val; |
|
864 |
5275
|
865 for (octave_idx_type k = min_p; k < p; k++) |
|
866 for (octave_idx_type j = 0; j < c; j++) |
|
867 for (octave_idx_type i = 0; i < r; i++) |
4747
|
868 xelem (i, j, k) = val; |
|
869 } |
4513
|
870 |
|
871 if (--old_rep->count <= 0) |
|
872 delete old_rep; |
|
873 } |
|
874 |
|
875 template <class T> |
|
876 void |
4587
|
877 Array<T>::resize_and_fill (const dim_vector& dv, const T& val) |
4513
|
878 { |
5275
|
879 octave_idx_type n = dv.length (); |
|
880 |
|
881 for (octave_idx_type i = 0; i < n; i++) |
4513
|
882 { |
4587
|
883 if (dv(i) < 0) |
4513
|
884 { |
|
885 (*current_liboctave_error_handler) |
|
886 ("can't resize to negative dimension"); |
|
887 return; |
|
888 } |
|
889 } |
|
890 |
4553
|
891 bool same_size = true; |
|
892 |
|
893 if (dimensions.length () != n) |
|
894 { |
|
895 same_size = false; |
|
896 } |
|
897 else |
4513
|
898 { |
5275
|
899 for (octave_idx_type i = 0; i < n; i++) |
4513
|
900 { |
4587
|
901 if (dv(i) != dimensions(i)) |
4553
|
902 { |
|
903 same_size = false; |
|
904 break; |
|
905 } |
4513
|
906 } |
|
907 } |
|
908 |
4553
|
909 if (same_size) |
4513
|
910 return; |
|
911 |
|
912 typename Array<T>::ArrayRep *old_rep = rep; |
|
913 const T *old_data = data (); |
|
914 |
5275
|
915 octave_idx_type len = get_size (dv); |
4709
|
916 |
4513
|
917 rep = new typename Array<T>::ArrayRep (len); |
|
918 |
4707
|
919 dim_vector dv_old = dimensions; |
5275
|
920 octave_idx_type dv_old_orig_len = dv_old.length (); |
4587
|
921 dimensions = dv; |
4513
|
922 |
4870
|
923 if (len > 0 && dv_old_orig_len > 0) |
4513
|
924 { |
5275
|
925 Array<octave_idx_type> ra_idx (dimensions.length (), 0); |
4870
|
926 |
|
927 if (n > dv_old_orig_len) |
|
928 { |
|
929 dv_old.resize (n); |
|
930 |
5275
|
931 for (octave_idx_type i = dv_old_orig_len; i < n; i++) |
4870
|
932 dv_old.elem (i) = 1; |
|
933 } |
4747
|
934 |
5275
|
935 for (octave_idx_type i = 0; i < len; i++) |
4747
|
936 { |
|
937 if (index_in_bounds (ra_idx, dv_old)) |
4870
|
938 rep->elem (i) = old_data[get_scalar_idx (ra_idx, dv_old)]; |
|
939 else |
|
940 rep->elem (i) = val; |
|
941 |
|
942 increment_index (ra_idx, dimensions); |
4747
|
943 } |
4513
|
944 } |
4870
|
945 else |
5275
|
946 for (octave_idx_type i = 0; i < len; i++) |
4870
|
947 rep->elem (i) = val; |
4513
|
948 |
|
949 if (--old_rep->count <= 0) |
|
950 delete old_rep; |
|
951 } |
|
952 |
|
953 template <class T> |
|
954 Array<T>& |
5275
|
955 Array<T>::insert (const Array<T>& a, octave_idx_type r, octave_idx_type c) |
4513
|
956 { |
4786
|
957 if (ndims () == 2 && a.ndims () == 2) |
|
958 insert2 (a, r, c); |
|
959 else |
|
960 insertN (a, r, c); |
|
961 |
|
962 return *this; |
|
963 } |
|
964 |
|
965 |
|
966 template <class T> |
|
967 Array<T>& |
5275
|
968 Array<T>::insert2 (const Array<T>& a, octave_idx_type r, octave_idx_type c) |
4786
|
969 { |
5275
|
970 octave_idx_type a_rows = a.rows (); |
|
971 octave_idx_type a_cols = a.cols (); |
4786
|
972 |
|
973 if (r < 0 || r + a_rows > rows () || c < 0 || c + a_cols > cols ()) |
|
974 { |
|
975 (*current_liboctave_error_handler) ("range error for insert"); |
|
976 return *this; |
|
977 } |
|
978 |
5275
|
979 for (octave_idx_type j = 0; j < a_cols; j++) |
|
980 for (octave_idx_type i = 0; i < a_rows; i++) |
4786
|
981 elem (r+i, c+j) = a.elem (i, j); |
|
982 |
|
983 return *this; |
|
984 } |
|
985 |
|
986 template <class T> |
|
987 Array<T>& |
5275
|
988 Array<T>::insertN (const Array<T>& a, octave_idx_type r, octave_idx_type c) |
4786
|
989 { |
4806
|
990 dim_vector dv = dims (); |
|
991 |
4765
|
992 dim_vector a_dv = a.dims (); |
|
993 |
|
994 int n = a_dv.length (); |
|
995 |
|
996 if (n == dimensions.length ()) |
4513
|
997 { |
5275
|
998 Array<octave_idx_type> a_ra_idx (a_dv.length (), 0); |
4765
|
999 |
|
1000 a_ra_idx.elem (0) = r; |
|
1001 a_ra_idx.elem (1) = c; |
|
1002 |
|
1003 for (int i = 0; i < n; i++) |
|
1004 { |
4806
|
1005 if (a_ra_idx(i) < 0 || (a_ra_idx(i) + a_dv(i)) > dv(i)) |
4765
|
1006 { |
|
1007 (*current_liboctave_error_handler) |
|
1008 ("Array<T>::insert: range error for insert"); |
|
1009 return *this; |
|
1010 } |
|
1011 } |
|
1012 |
5275
|
1013 octave_idx_type n_elt = a.numel (); |
4806
|
1014 |
|
1015 const T *a_data = a.data (); |
|
1016 |
5275
|
1017 octave_idx_type iidx = 0; |
4806
|
1018 |
5275
|
1019 octave_idx_type a_rows = a_dv(0); |
|
1020 |
|
1021 octave_idx_type this_rows = dv(0); |
4806
|
1022 |
5275
|
1023 octave_idx_type numel_page = a_dv(0) * a_dv(1); |
|
1024 |
|
1025 octave_idx_type count_pages = 0; |
4806
|
1026 |
5275
|
1027 for (octave_idx_type i = 0; i < n_elt; i++) |
4765
|
1028 { |
4806
|
1029 if (i != 0 && i % a_rows == 0) |
|
1030 iidx += (this_rows - a_rows); |
|
1031 |
|
1032 if (i % numel_page == 0) |
|
1033 iidx = c * dv(0) + r + dv(0) * dv(1) * count_pages++; |
|
1034 |
|
1035 elem (iidx++) = a_data[i]; |
4765
|
1036 } |
4513
|
1037 } |
4765
|
1038 else |
|
1039 (*current_liboctave_error_handler) |
|
1040 ("Array<T>::insert: invalid indexing operation"); |
4513
|
1041 |
|
1042 return *this; |
|
1043 } |
|
1044 |
|
1045 template <class T> |
|
1046 Array<T>& |
5275
|
1047 Array<T>::insert (const Array<T>& a, const Array<octave_idx_type>& ra_idx) |
4513
|
1048 { |
5275
|
1049 octave_idx_type n = ra_idx.length (); |
4513
|
1050 |
|
1051 if (n == dimensions.length ()) |
|
1052 { |
4915
|
1053 dim_vector dva = a.dims (); |
|
1054 dim_vector dv = dims (); |
|
1055 int len_a = dva.length (); |
5120
|
1056 int non_full_dim = 0; |
4513
|
1057 |
5275
|
1058 for (octave_idx_type i = 0; i < n; i++) |
4513
|
1059 { |
4915
|
1060 if (ra_idx(i) < 0 || (ra_idx(i) + |
|
1061 (i < len_a ? dva(i) : 1)) > dimensions(i)) |
4513
|
1062 { |
|
1063 (*current_liboctave_error_handler) |
|
1064 ("Array<T>::insert: range error for insert"); |
|
1065 return *this; |
|
1066 } |
5120
|
1067 |
|
1068 if (dv(i) != (i < len_a ? dva(i) : 1)) |
|
1069 non_full_dim++; |
4513
|
1070 } |
|
1071 |
4915
|
1072 if (dva.numel ()) |
|
1073 { |
5120
|
1074 if (non_full_dim < 2) |
4915
|
1075 { |
5120
|
1076 // Special case for fast concatenation |
|
1077 const T *a_data = a.data (); |
5275
|
1078 octave_idx_type numel_to_move = 1; |
|
1079 octave_idx_type skip = 0; |
5120
|
1080 for (int i = 0; i < len_a; i++) |
|
1081 if (ra_idx(i) == 0 && dva(i) == dv(i)) |
|
1082 numel_to_move *= dva(i); |
|
1083 else |
|
1084 { |
|
1085 skip = numel_to_move * (dv(i) - dva(i)); |
|
1086 numel_to_move *= dva(i); |
|
1087 break; |
|
1088 } |
|
1089 |
5275
|
1090 octave_idx_type jidx = ra_idx(n-1); |
5120
|
1091 for (int i = n-2; i >= 0; i--) |
|
1092 { |
|
1093 jidx *= dv(i); |
|
1094 jidx += ra_idx(i); |
|
1095 } |
|
1096 |
5275
|
1097 octave_idx_type iidx = 0; |
|
1098 octave_idx_type moves = dva.numel () / numel_to_move; |
|
1099 for (octave_idx_type i = 0; i < moves; i++) |
5120
|
1100 { |
5275
|
1101 for (octave_idx_type j = 0; j < numel_to_move; j++) |
5120
|
1102 elem (jidx++) = a_data[iidx++]; |
|
1103 jidx += skip; |
|
1104 } |
4915
|
1105 } |
5120
|
1106 else |
4915
|
1107 { |
5120
|
1108 // Generic code |
|
1109 const T *a_data = a.data (); |
|
1110 int nel = a.numel (); |
5275
|
1111 Array<octave_idx_type> a_idx (n, 0); |
5120
|
1112 |
|
1113 for (int i = 0; i < nel; i++) |
|
1114 { |
|
1115 int iidx = a_idx(n-1) + ra_idx(n-1); |
|
1116 for (int j = n-2; j >= 0; j--) |
|
1117 { |
|
1118 iidx *= dv(j); |
|
1119 iidx += a_idx(j) + ra_idx(j); |
|
1120 } |
|
1121 |
|
1122 elem (iidx) = a_data[i]; |
|
1123 |
|
1124 increment_index (a_idx, dva); |
|
1125 } |
4915
|
1126 } |
|
1127 } |
4513
|
1128 } |
|
1129 else |
|
1130 (*current_liboctave_error_handler) |
|
1131 ("Array<T>::insert: invalid indexing operation"); |
|
1132 |
|
1133 return *this; |
|
1134 } |
|
1135 |
|
1136 template <class T> |
|
1137 Array<T> |
|
1138 Array<T>::transpose (void) const |
|
1139 { |
4548
|
1140 assert (ndims () == 2); |
|
1141 |
5275
|
1142 octave_idx_type nr = dim1 (); |
|
1143 octave_idx_type nc = dim2 (); |
4513
|
1144 |
|
1145 if (nr > 1 && nc > 1) |
|
1146 { |
|
1147 Array<T> result (dim_vector (nc, nr)); |
|
1148 |
5275
|
1149 for (octave_idx_type j = 0; j < nc; j++) |
|
1150 for (octave_idx_type i = 0; i < nr; i++) |
4513
|
1151 result.xelem (j, i) = xelem (i, j); |
|
1152 |
|
1153 return result; |
|
1154 } |
|
1155 else |
|
1156 { |
|
1157 // Fast transpose for vectors and empty matrices |
|
1158 return Array<T> (*this, dim_vector (nc, nr)); |
|
1159 } |
|
1160 } |
|
1161 |
|
1162 template <class T> |
|
1163 T * |
|
1164 Array<T>::fortran_vec (void) |
|
1165 { |
|
1166 if (rep->count > 1) |
|
1167 { |
|
1168 --rep->count; |
|
1169 rep = new typename Array<T>::ArrayRep (*rep); |
|
1170 } |
|
1171 return rep->data; |
|
1172 } |
|
1173 |
|
1174 template <class T> |
3933
|
1175 void |
4517
|
1176 Array<T>::maybe_delete_dims (void) |
|
1177 { |
4587
|
1178 int nd = dimensions.length (); |
4517
|
1179 |
|
1180 dim_vector new_dims (1, 1); |
|
1181 |
|
1182 bool delete_dims = true; |
|
1183 |
4587
|
1184 for (int i = nd - 1; i >= 0; i--) |
4517
|
1185 { |
|
1186 if (delete_dims) |
|
1187 { |
|
1188 if (dimensions(i) != 1) |
|
1189 { |
|
1190 delete_dims = false; |
|
1191 |
|
1192 new_dims = dim_vector (i + 1, dimensions(i)); |
|
1193 } |
|
1194 } |
|
1195 else |
|
1196 new_dims(i) = dimensions(i); |
|
1197 } |
4530
|
1198 |
4587
|
1199 if (nd != new_dims.length ()) |
4517
|
1200 dimensions = new_dims; |
|
1201 } |
|
1202 |
|
1203 template <class T> |
|
1204 void |
|
1205 Array<T>::clear_index (void) |
|
1206 { |
|
1207 delete [] idx; |
|
1208 idx = 0; |
|
1209 idx_count = 0; |
|
1210 } |
|
1211 |
|
1212 template <class T> |
|
1213 void |
|
1214 Array<T>::set_index (const idx_vector& idx_arg) |
|
1215 { |
|
1216 int nd = ndims (); |
|
1217 |
|
1218 if (! idx && nd > 0) |
|
1219 idx = new idx_vector [nd]; |
|
1220 |
|
1221 if (idx_count < nd) |
|
1222 { |
|
1223 idx[idx_count++] = idx_arg; |
|
1224 } |
|
1225 else |
|
1226 { |
|
1227 idx_vector *new_idx = new idx_vector [idx_count+1]; |
|
1228 |
|
1229 for (int i = 0; i < idx_count; i++) |
|
1230 new_idx[i] = idx[i]; |
|
1231 |
|
1232 new_idx[idx_count++] = idx_arg; |
|
1233 |
|
1234 delete [] idx; |
|
1235 |
|
1236 idx = new_idx; |
|
1237 } |
|
1238 } |
|
1239 |
|
1240 template <class T> |
|
1241 void |
|
1242 Array<T>::maybe_delete_elements (idx_vector& idx_arg) |
|
1243 { |
|
1244 switch (ndims ()) |
|
1245 { |
|
1246 case 1: |
|
1247 maybe_delete_elements_1 (idx_arg); |
|
1248 break; |
|
1249 |
|
1250 case 2: |
|
1251 maybe_delete_elements_2 (idx_arg); |
|
1252 break; |
|
1253 |
|
1254 default: |
|
1255 (*current_liboctave_error_handler) |
|
1256 ("Array<T>::maybe_delete_elements: invalid operation"); |
|
1257 break; |
|
1258 } |
|
1259 } |
|
1260 |
|
1261 template <class T> |
|
1262 void |
|
1263 Array<T>::maybe_delete_elements_1 (idx_vector& idx_arg) |
|
1264 { |
5275
|
1265 octave_idx_type len = length (); |
4517
|
1266 |
|
1267 if (len == 0) |
|
1268 return; |
|
1269 |
|
1270 if (idx_arg.is_colon_equiv (len, 1)) |
|
1271 resize_no_fill (0); |
|
1272 else |
|
1273 { |
|
1274 int num_to_delete = idx_arg.length (len); |
|
1275 |
|
1276 if (num_to_delete != 0) |
|
1277 { |
5275
|
1278 octave_idx_type new_len = len; |
|
1279 |
|
1280 octave_idx_type iidx = 0; |
|
1281 |
|
1282 for (octave_idx_type i = 0; i < len; i++) |
4517
|
1283 if (i == idx_arg.elem (iidx)) |
|
1284 { |
|
1285 iidx++; |
|
1286 new_len--; |
|
1287 |
|
1288 if (iidx == num_to_delete) |
|
1289 break; |
|
1290 } |
|
1291 |
|
1292 if (new_len > 0) |
|
1293 { |
|
1294 T *new_data = new T [new_len]; |
|
1295 |
5275
|
1296 octave_idx_type ii = 0; |
4517
|
1297 iidx = 0; |
5275
|
1298 for (octave_idx_type i = 0; i < len; i++) |
4517
|
1299 { |
|
1300 if (iidx < num_to_delete && i == idx_arg.elem (iidx)) |
|
1301 iidx++; |
|
1302 else |
|
1303 { |
|
1304 new_data[ii] = elem (i); |
|
1305 ii++; |
|
1306 } |
|
1307 } |
|
1308 |
|
1309 if (--rep->count <= 0) |
|
1310 delete rep; |
|
1311 |
|
1312 rep = new typename Array<T>::ArrayRep (new_data, new_len); |
|
1313 |
|
1314 dimensions.resize (1); |
|
1315 dimensions(0) = new_len; |
|
1316 } |
|
1317 else |
|
1318 (*current_liboctave_error_handler) |
|
1319 ("A(idx) = []: index out of range"); |
|
1320 } |
|
1321 } |
|
1322 } |
|
1323 |
|
1324 template <class T> |
|
1325 void |
|
1326 Array<T>::maybe_delete_elements_2 (idx_vector& idx_arg) |
|
1327 { |
4548
|
1328 assert (ndims () == 2); |
|
1329 |
5275
|
1330 octave_idx_type nr = dim1 (); |
|
1331 octave_idx_type nc = dim2 (); |
4517
|
1332 |
|
1333 if (nr == 0 && nc == 0) |
|
1334 return; |
|
1335 |
5275
|
1336 octave_idx_type n; |
4517
|
1337 if (nr == 1) |
|
1338 n = nc; |
|
1339 else if (nc == 1) |
|
1340 n = nr; |
|
1341 else |
|
1342 { |
4756
|
1343 // Reshape to row vector for Matlab compatibility. |
|
1344 |
|
1345 n = nr * nc; |
|
1346 nr = 1; |
|
1347 nc = n; |
4517
|
1348 } |
|
1349 |
|
1350 if (idx_arg.is_colon_equiv (n, 1)) |
|
1351 { |
|
1352 // Either A(:) = [] or A(idx) = [] with idx enumerating all |
|
1353 // elements, so we delete all elements and return [](0x0). To |
|
1354 // preserve the orientation of the vector, you have to use |
|
1355 // A(idx,:) = [] (delete rows) or A(:,idx) (delete columns). |
|
1356 |
|
1357 resize_no_fill (0, 0); |
|
1358 return; |
|
1359 } |
|
1360 |
|
1361 idx_arg.sort (true); |
|
1362 |
5275
|
1363 octave_idx_type num_to_delete = idx_arg.length (n); |
4517
|
1364 |
|
1365 if (num_to_delete != 0) |
|
1366 { |
5275
|
1367 octave_idx_type new_n = n; |
|
1368 |
|
1369 octave_idx_type iidx = 0; |
|
1370 |
|
1371 for (octave_idx_type i = 0; i < n; i++) |
4517
|
1372 if (i == idx_arg.elem (iidx)) |
|
1373 { |
|
1374 iidx++; |
|
1375 new_n--; |
|
1376 |
|
1377 if (iidx == num_to_delete) |
|
1378 break; |
|
1379 } |
|
1380 |
|
1381 if (new_n > 0) |
|
1382 { |
|
1383 T *new_data = new T [new_n]; |
|
1384 |
5275
|
1385 octave_idx_type ii = 0; |
4517
|
1386 iidx = 0; |
5275
|
1387 for (octave_idx_type i = 0; i < n; i++) |
4517
|
1388 { |
|
1389 if (iidx < num_to_delete && i == idx_arg.elem (iidx)) |
|
1390 iidx++; |
|
1391 else |
|
1392 { |
4756
|
1393 new_data[ii] = elem (i); |
4517
|
1394 |
|
1395 ii++; |
|
1396 } |
|
1397 } |
|
1398 |
|
1399 if (--(Array<T>::rep)->count <= 0) |
|
1400 delete Array<T>::rep; |
|
1401 |
|
1402 Array<T>::rep = new typename Array<T>::ArrayRep (new_data, new_n); |
|
1403 |
|
1404 dimensions.resize (2); |
|
1405 |
|
1406 if (nr == 1) |
|
1407 { |
|
1408 dimensions(0) = 1; |
|
1409 dimensions(1) = new_n; |
|
1410 } |
|
1411 else |
|
1412 { |
|
1413 dimensions(0) = new_n; |
|
1414 dimensions(1) = 1; |
|
1415 } |
|
1416 } |
|
1417 else |
|
1418 (*current_liboctave_error_handler) |
|
1419 ("A(idx) = []: index out of range"); |
|
1420 } |
|
1421 } |
|
1422 |
|
1423 template <class T> |
|
1424 void |
|
1425 Array<T>::maybe_delete_elements (idx_vector& idx_i, idx_vector& idx_j) |
|
1426 { |
4548
|
1427 assert (ndims () == 2); |
|
1428 |
5275
|
1429 octave_idx_type nr = dim1 (); |
|
1430 octave_idx_type nc = dim2 (); |
4517
|
1431 |
|
1432 if (nr == 0 && nc == 0) |
|
1433 return; |
|
1434 |
|
1435 if (idx_i.is_colon ()) |
|
1436 { |
|
1437 if (idx_j.is_colon ()) |
|
1438 { |
|
1439 // A(:,:) -- We are deleting columns and rows, so the result |
|
1440 // is [](0x0). |
|
1441 |
|
1442 resize_no_fill (0, 0); |
|
1443 return; |
|
1444 } |
|
1445 |
|
1446 if (idx_j.is_colon_equiv (nc, 1)) |
|
1447 { |
|
1448 // A(:,j) -- We are deleting columns by enumerating them, |
|
1449 // If we enumerate all of them, we should have zero columns |
|
1450 // with the same number of rows that we started with. |
|
1451 |
|
1452 resize_no_fill (nr, 0); |
|
1453 return; |
|
1454 } |
|
1455 } |
|
1456 |
|
1457 if (idx_j.is_colon () && idx_i.is_colon_equiv (nr, 1)) |
|
1458 { |
|
1459 // A(i,:) -- We are deleting rows by enumerating them. If we |
|
1460 // enumerate all of them, we should have zero rows with the |
|
1461 // same number of columns that we started with. |
|
1462 |
|
1463 resize_no_fill (0, nc); |
|
1464 return; |
|
1465 } |
|
1466 |
|
1467 if (idx_i.is_colon_equiv (nr, 1)) |
|
1468 { |
|
1469 if (idx_j.is_colon_equiv (nc, 1)) |
|
1470 resize_no_fill (0, 0); |
|
1471 else |
|
1472 { |
|
1473 idx_j.sort (true); |
|
1474 |
5275
|
1475 octave_idx_type num_to_delete = idx_j.length (nc); |
4517
|
1476 |
|
1477 if (num_to_delete != 0) |
|
1478 { |
|
1479 if (nr == 1 && num_to_delete == nc) |
|
1480 resize_no_fill (0, 0); |
|
1481 else |
|
1482 { |
5275
|
1483 octave_idx_type new_nc = nc; |
|
1484 |
|
1485 octave_idx_type iidx = 0; |
|
1486 |
|
1487 for (octave_idx_type j = 0; j < nc; j++) |
4517
|
1488 if (j == idx_j.elem (iidx)) |
|
1489 { |
|
1490 iidx++; |
|
1491 new_nc--; |
|
1492 |
|
1493 if (iidx == num_to_delete) |
|
1494 break; |
|
1495 } |
|
1496 |
|
1497 if (new_nc > 0) |
|
1498 { |
|
1499 T *new_data = new T [nr * new_nc]; |
|
1500 |
5275
|
1501 octave_idx_type jj = 0; |
4517
|
1502 iidx = 0; |
5275
|
1503 for (octave_idx_type j = 0; j < nc; j++) |
4517
|
1504 { |
|
1505 if (iidx < num_to_delete && j == idx_j.elem (iidx)) |
|
1506 iidx++; |
|
1507 else |
|
1508 { |
5275
|
1509 for (octave_idx_type i = 0; i < nr; i++) |
4517
|
1510 new_data[nr*jj+i] = elem (i, j); |
|
1511 jj++; |
|
1512 } |
|
1513 } |
|
1514 |
|
1515 if (--(Array<T>::rep)->count <= 0) |
|
1516 delete Array<T>::rep; |
|
1517 |
|
1518 Array<T>::rep = new typename Array<T>::ArrayRep (new_data, nr * new_nc); |
|
1519 |
|
1520 dimensions.resize (2); |
|
1521 dimensions(1) = new_nc; |
|
1522 } |
|
1523 else |
|
1524 (*current_liboctave_error_handler) |
|
1525 ("A(idx) = []: index out of range"); |
|
1526 } |
|
1527 } |
|
1528 } |
|
1529 } |
|
1530 else if (idx_j.is_colon_equiv (nc, 1)) |
|
1531 { |
|
1532 if (idx_i.is_colon_equiv (nr, 1)) |
|
1533 resize_no_fill (0, 0); |
|
1534 else |
|
1535 { |
|
1536 idx_i.sort (true); |
|
1537 |
5275
|
1538 octave_idx_type num_to_delete = idx_i.length (nr); |
4517
|
1539 |
|
1540 if (num_to_delete != 0) |
|
1541 { |
|
1542 if (nc == 1 && num_to_delete == nr) |
|
1543 resize_no_fill (0, 0); |
|
1544 else |
|
1545 { |
5275
|
1546 octave_idx_type new_nr = nr; |
|
1547 |
|
1548 octave_idx_type iidx = 0; |
|
1549 |
|
1550 for (octave_idx_type i = 0; i < nr; i++) |
4517
|
1551 if (i == idx_i.elem (iidx)) |
|
1552 { |
|
1553 iidx++; |
|
1554 new_nr--; |
|
1555 |
|
1556 if (iidx == num_to_delete) |
|
1557 break; |
|
1558 } |
|
1559 |
|
1560 if (new_nr > 0) |
|
1561 { |
|
1562 T *new_data = new T [new_nr * nc]; |
|
1563 |
5275
|
1564 octave_idx_type ii = 0; |
4517
|
1565 iidx = 0; |
5275
|
1566 for (octave_idx_type i = 0; i < nr; i++) |
4517
|
1567 { |
|
1568 if (iidx < num_to_delete && i == idx_i.elem (iidx)) |
|
1569 iidx++; |
|
1570 else |
|
1571 { |
5275
|
1572 for (octave_idx_type j = 0; j < nc; j++) |
4517
|
1573 new_data[new_nr*j+ii] = elem (i, j); |
|
1574 ii++; |
|
1575 } |
|
1576 } |
|
1577 |
|
1578 if (--(Array<T>::rep)->count <= 0) |
|
1579 delete Array<T>::rep; |
|
1580 |
|
1581 Array<T>::rep = new typename Array<T>::ArrayRep (new_data, new_nr * nc); |
|
1582 |
|
1583 dimensions.resize (2); |
|
1584 dimensions(0) = new_nr; |
|
1585 } |
|
1586 else |
|
1587 (*current_liboctave_error_handler) |
|
1588 ("A(idx) = []: index out of range"); |
|
1589 } |
|
1590 } |
|
1591 } |
|
1592 } |
|
1593 } |
|
1594 |
|
1595 template <class T> |
|
1596 void |
|
1597 Array<T>::maybe_delete_elements (idx_vector&, idx_vector&, idx_vector&) |
|
1598 { |
|
1599 assert (0); |
|
1600 } |
|
1601 |
|
1602 template <class T> |
|
1603 void |
4585
|
1604 Array<T>::maybe_delete_elements (Array<idx_vector>& ra_idx, const T& rfv) |
4517
|
1605 { |
5275
|
1606 octave_idx_type n_idx = ra_idx.length (); |
4517
|
1607 |
|
1608 dim_vector lhs_dims = dims (); |
|
1609 |
4821
|
1610 if (lhs_dims.all_zero ()) |
|
1611 return; |
|
1612 |
4755
|
1613 int n_lhs_dims = lhs_dims.length (); |
4757
|
1614 |
4740
|
1615 Array<int> idx_is_colon (n_idx, 0); |
|
1616 |
|
1617 Array<int> idx_is_colon_equiv (n_idx, 0); |
4517
|
1618 |
|
1619 // Initialization of colon arrays. |
4757
|
1620 |
5275
|
1621 for (octave_idx_type i = 0; i < n_idx; i++) |
4517
|
1622 { |
4585
|
1623 idx_is_colon_equiv(i) = ra_idx(i).is_colon_equiv (lhs_dims(i), 1); |
|
1624 |
|
1625 idx_is_colon(i) = ra_idx(i).is_colon (); |
4517
|
1626 } |
|
1627 |
4755
|
1628 bool idx_ok = true; |
|
1629 |
|
1630 // Check for index out of bounds. |
|
1631 |
5275
|
1632 for (octave_idx_type i = 0 ; i < n_idx - 1; i++) |
4517
|
1633 { |
4755
|
1634 if (! (idx_is_colon(i) || idx_is_colon_equiv(i))) |
|
1635 { |
|
1636 ra_idx(i).sort (true); |
4757
|
1637 |
4755
|
1638 if (ra_idx(i).max () > lhs_dims(i)) |
|
1639 { |
|
1640 (*current_liboctave_error_handler) |
|
1641 ("index exceeds array dimensions"); |
4757
|
1642 |
4755
|
1643 idx_ok = false; |
|
1644 break; |
|
1645 } |
|
1646 else if (ra_idx(i).min () < 0) // I believe this is checked elsewhere |
|
1647 { |
|
1648 (*current_liboctave_error_handler) |
|
1649 ("index must be one or larger"); |
|
1650 |
|
1651 idx_ok = false; |
|
1652 break; |
|
1653 } |
|
1654 } |
4517
|
1655 } |
4757
|
1656 |
4755
|
1657 if (n_idx <= n_lhs_dims) |
4517
|
1658 { |
5275
|
1659 octave_idx_type last_idx = ra_idx(n_idx-1).max (); |
|
1660 |
|
1661 octave_idx_type sum_el = lhs_dims(n_idx-1); |
|
1662 |
|
1663 for (octave_idx_type i = n_idx; i < n_lhs_dims; i++) |
4755
|
1664 sum_el *= lhs_dims(i); |
|
1665 |
|
1666 if (last_idx > sum_el - 1) |
|
1667 { |
|
1668 (*current_liboctave_error_handler) |
|
1669 ("index exceeds array dimensions"); |
|
1670 |
|
1671 idx_ok = false; |
|
1672 } |
4757
|
1673 } |
4755
|
1674 |
|
1675 if (idx_ok) |
|
1676 { |
|
1677 if (n_idx > 1 |
|
1678 && (all_ones (idx_is_colon) || all_ones (idx_is_colon_equiv))) |
4517
|
1679 { |
4755
|
1680 // A(:,:,:) -- we are deleting elements in all dimensions, so |
|
1681 // the result is [](0x0x0). |
|
1682 |
|
1683 dim_vector zeros; |
|
1684 zeros.resize (n_idx); |
|
1685 |
|
1686 for (int i = 0; i < n_idx; i++) |
|
1687 zeros(i) = 0; |
|
1688 |
|
1689 resize (zeros, rfv); |
4517
|
1690 } |
|
1691 |
4755
|
1692 else if (n_idx > 1 |
|
1693 && num_ones (idx_is_colon) == n_idx - 1 |
|
1694 && num_ones (idx_is_colon_equiv) == n_idx) |
|
1695 { |
|
1696 // A(:,:,j) -- we are deleting elements in one dimension by |
|
1697 // enumerating them. |
|
1698 // |
|
1699 // If we enumerate all of the elements, we should have zero |
|
1700 // elements in that dimension with the same number of elements |
|
1701 // in the other dimensions that we started with. |
|
1702 |
|
1703 dim_vector temp_dims; |
|
1704 temp_dims.resize (n_idx); |
|
1705 |
5275
|
1706 for (octave_idx_type i = 0; i < n_idx; i++) |
4755
|
1707 { |
|
1708 if (idx_is_colon (i)) |
|
1709 temp_dims(i) = lhs_dims(i); |
|
1710 else |
|
1711 temp_dims(i) = 0; |
|
1712 } |
|
1713 |
|
1714 resize (temp_dims); |
|
1715 } |
|
1716 else if (n_idx > 1 && num_ones (idx_is_colon) == n_idx - 1) |
4741
|
1717 { |
4755
|
1718 // We have colons in all indices except for one. |
|
1719 // This index tells us which slice to delete |
|
1720 |
|
1721 if (n_idx < n_lhs_dims) |
|
1722 { |
|
1723 // Collapse dimensions beyond last index. |
|
1724 |
|
1725 if (liboctave_wfi_flag && ! (ra_idx(n_idx-1).is_colon ())) |
|
1726 (*current_liboctave_warning_handler) |
|
1727 ("fewer indices than dimensions for N-d array"); |
|
1728 |
5275
|
1729 for (octave_idx_type i = n_idx; i < n_lhs_dims; i++) |
4755
|
1730 lhs_dims(n_idx-1) *= lhs_dims(i); |
|
1731 |
|
1732 lhs_dims.resize (n_idx); |
|
1733 |
|
1734 // Reshape *this. |
|
1735 dimensions = lhs_dims; |
|
1736 } |
|
1737 |
|
1738 int non_col = 0; |
|
1739 |
|
1740 // Find the non-colon column. |
|
1741 |
5275
|
1742 for (octave_idx_type i = 0; i < n_idx; i++) |
4755
|
1743 { |
|
1744 if (! idx_is_colon(i)) |
|
1745 non_col = i; |
|
1746 } |
|
1747 |
|
1748 // The length of the non-colon dimension. |
|
1749 |
5275
|
1750 octave_idx_type non_col_dim = lhs_dims (non_col); |
|
1751 |
|
1752 octave_idx_type num_to_delete = ra_idx(non_col).length (lhs_dims (non_col)); |
4755
|
1753 |
|
1754 if (num_to_delete > 0) |
|
1755 { |
|
1756 int temp = lhs_dims.num_ones (); |
|
1757 |
|
1758 if (non_col_dim == 1) |
|
1759 temp--; |
|
1760 |
|
1761 if (temp == n_idx - 1 && num_to_delete == non_col_dim) |
|
1762 { |
|
1763 // We have A with (1x1x4), where A(1,:,1:4) |
|
1764 // Delete all (0x0x0) |
|
1765 |
|
1766 dim_vector zero_dims (n_idx, 0); |
|
1767 |
|
1768 resize (zero_dims, rfv); |
|
1769 } |
|
1770 else |
|
1771 { |
|
1772 // New length of non-colon dimension |
|
1773 // (calculated in the next for loop) |
|
1774 |
5275
|
1775 octave_idx_type new_dim = non_col_dim; |
|
1776 |
|
1777 octave_idx_type iidx = 0; |
|
1778 |
|
1779 for (octave_idx_type j = 0; j < non_col_dim; j++) |
4755
|
1780 if (j == ra_idx(non_col).elem (iidx)) |
|
1781 { |
|
1782 iidx++; |
|
1783 |
|
1784 new_dim--; |
|
1785 |
|
1786 if (iidx == num_to_delete) |
|
1787 break; |
|
1788 } |
|
1789 |
|
1790 // Creating the new nd array after deletions. |
|
1791 |
|
1792 if (new_dim > 0) |
|
1793 { |
|
1794 // Calculate number of elements in new array. |
|
1795 |
5275
|
1796 octave_idx_type num_new_elem=1; |
4755
|
1797 |
|
1798 for (int i = 0; i < n_idx; i++) |
|
1799 { |
|
1800 if (i == non_col) |
|
1801 num_new_elem *= new_dim; |
|
1802 |
|
1803 else |
|
1804 num_new_elem *= lhs_dims(i); |
|
1805 } |
|
1806 |
|
1807 T *new_data = new T [num_new_elem]; |
|
1808 |
5275
|
1809 Array<octave_idx_type> result_idx (n_lhs_dims, 0); |
4755
|
1810 |
|
1811 dim_vector new_lhs_dim = lhs_dims; |
|
1812 |
|
1813 new_lhs_dim(non_col) = new_dim; |
|
1814 |
5275
|
1815 octave_idx_type num_elem = 1; |
|
1816 |
|
1817 octave_idx_type numidx = 0; |
|
1818 |
|
1819 octave_idx_type n = length (); |
4755
|
1820 |
|
1821 for (int i = 0; i < n_lhs_dims; i++) |
|
1822 if (i != non_col) |
|
1823 num_elem *= lhs_dims(i); |
|
1824 |
|
1825 num_elem *= ra_idx(non_col).capacity (); |
|
1826 |
5275
|
1827 for (octave_idx_type i = 0; i < n; i++) |
4755
|
1828 { |
|
1829 if (numidx < num_elem |
|
1830 && is_in (result_idx(non_col), ra_idx(non_col))) |
|
1831 numidx++; |
|
1832 |
|
1833 else |
|
1834 { |
5275
|
1835 Array<octave_idx_type> temp_result_idx = result_idx; |
|
1836 |
|
1837 octave_idx_type num_lgt = how_many_lgt (result_idx(non_col), |
4755
|
1838 ra_idx(non_col)); |
|
1839 |
|
1840 temp_result_idx(non_col) -= num_lgt; |
|
1841 |
5275
|
1842 octave_idx_type kidx |
4755
|
1843 = ::compute_index (temp_result_idx, new_lhs_dim); |
|
1844 |
|
1845 new_data[kidx] = elem (result_idx); |
|
1846 } |
|
1847 |
|
1848 increment_index (result_idx, lhs_dims); |
|
1849 } |
|
1850 |
|
1851 if (--rep->count <= 0) |
|
1852 delete rep; |
|
1853 |
|
1854 rep = new typename Array<T>::ArrayRep (new_data, |
|
1855 num_new_elem); |
|
1856 |
|
1857 dimensions = new_lhs_dim; |
|
1858 } |
|
1859 } |
|
1860 } |
4517
|
1861 } |
4755
|
1862 else if (n_idx == 1) |
4517
|
1863 { |
4821
|
1864 // This handle cases where we only have one index (not |
|
1865 // colon). The index denotes which elements we should |
|
1866 // delete in the array which can be of any dimension. We |
|
1867 // return a column vector, except for the case where we are |
|
1868 // operating on a row vector. The elements are numerated |
|
1869 // column by column. |
4755
|
1870 // |
|
1871 // A(3,3,3)=2; |
|
1872 // A(3:5) = []; A(6)=[] |
4757
|
1873 |
5275
|
1874 octave_idx_type lhs_numel = numel (); |
4757
|
1875 |
4821
|
1876 idx_vector idx_vec = ra_idx(0); |
|
1877 |
|
1878 idx_vec.freeze (lhs_numel, 0, true, liboctave_wrore_flag); |
|
1879 |
|
1880 idx_vec.sort (true); |
|
1881 |
5275
|
1882 octave_idx_type num_to_delete = idx_vec.length (lhs_numel); |
4821
|
1883 |
|
1884 if (num_to_delete > 0) |
4517
|
1885 { |
5275
|
1886 octave_idx_type new_numel = lhs_numel - num_to_delete; |
4821
|
1887 |
|
1888 T *new_data = new T[new_numel]; |
|
1889 |
5275
|
1890 Array<octave_idx_type> lhs_ra_idx (ndims (), 0); |
|
1891 |
|
1892 octave_idx_type ii = 0; |
|
1893 octave_idx_type iidx = 0; |
|
1894 |
|
1895 for (octave_idx_type i = 0; i < lhs_numel; i++) |
4755
|
1896 { |
4821
|
1897 if (iidx < num_to_delete && i == idx_vec.elem (iidx)) |
|
1898 { |
|
1899 iidx++; |
|
1900 } |
|
1901 else |
|
1902 { |
|
1903 new_data[ii++] = elem (lhs_ra_idx); |
|
1904 } |
|
1905 |
|
1906 increment_index (lhs_ra_idx, lhs_dims); |
|
1907 } |
|
1908 |
|
1909 if (--(Array<T>::rep)->count <= 0) |
|
1910 delete Array<T>::rep; |
|
1911 |
|
1912 Array<T>::rep = new typename Array<T>::ArrayRep (new_data, new_numel); |
|
1913 |
|
1914 dimensions.resize (2); |
|
1915 |
|
1916 if (lhs_dims.length () == 2 && lhs_dims(1) == 1) |
|
1917 { |
|
1918 dimensions(0) = new_numel; |
|
1919 dimensions(1) = 1; |
4755
|
1920 } |
|
1921 else |
|
1922 { |
4821
|
1923 dimensions(0) = 1; |
|
1924 dimensions(1) = new_numel; |
4755
|
1925 } |
4517
|
1926 } |
|
1927 } |
4755
|
1928 else if (num_ones (idx_is_colon) < n_idx) |
|
1929 { |
|
1930 (*current_liboctave_error_handler) |
|
1931 ("a null assignment can have only one non-colon index"); |
|
1932 } |
4517
|
1933 } |
|
1934 } |
|
1935 |
|
1936 template <class T> |
|
1937 Array<T> |
|
1938 Array<T>::value (void) |
|
1939 { |
|
1940 Array<T> retval; |
|
1941 |
|
1942 int n_idx = index_count (); |
|
1943 |
|
1944 if (n_idx == 2) |
|
1945 { |
|
1946 idx_vector *tmp = get_idx (); |
|
1947 |
|
1948 idx_vector idx_i = tmp[0]; |
|
1949 idx_vector idx_j = tmp[1]; |
|
1950 |
|
1951 retval = index (idx_i, idx_j); |
|
1952 } |
|
1953 else if (n_idx == 1) |
|
1954 { |
|
1955 retval = index (idx[0]); |
|
1956 } |
|
1957 else |
|
1958 (*current_liboctave_error_handler) |
|
1959 ("Array<T>::value: invalid number of indices specified"); |
|
1960 |
|
1961 clear_index (); |
|
1962 |
|
1963 return retval; |
|
1964 } |
|
1965 |
|
1966 template <class T> |
|
1967 Array<T> |
|
1968 Array<T>::index (idx_vector& idx_arg, int resize_ok, const T& rfv) const |
|
1969 { |
|
1970 Array<T> retval; |
|
1971 |
5081
|
1972 dim_vector dv = idx_arg.orig_dimensions (); |
|
1973 |
|
1974 if (dv.length () > 2 || ndims () > 2) |
|
1975 retval = indexN (idx_arg, resize_ok, rfv); |
|
1976 else |
4517
|
1977 { |
5081
|
1978 switch (ndims ()) |
|
1979 { |
|
1980 case 1: |
|
1981 retval = index1 (idx_arg, resize_ok, rfv); |
|
1982 break; |
|
1983 |
|
1984 case 2: |
|
1985 retval = index2 (idx_arg, resize_ok, rfv); |
|
1986 break; |
|
1987 |
|
1988 default: |
|
1989 (*current_liboctave_error_handler) |
|
1990 ("invalid array (internal error)"); |
|
1991 break; |
|
1992 } |
4517
|
1993 } |
|
1994 |
|
1995 return retval; |
|
1996 } |
|
1997 |
|
1998 template <class T> |
|
1999 Array<T> |
|
2000 Array<T>::index1 (idx_vector& idx_arg, int resize_ok, const T& rfv) const |
|
2001 { |
|
2002 Array<T> retval; |
|
2003 |
5275
|
2004 octave_idx_type len = length (); |
|
2005 |
|
2006 octave_idx_type n = idx_arg.freeze (len, "vector", resize_ok); |
4517
|
2007 |
|
2008 if (idx_arg) |
|
2009 { |
|
2010 if (idx_arg.is_colon_equiv (len)) |
|
2011 { |
|
2012 retval = *this; |
|
2013 } |
|
2014 else if (n == 0) |
|
2015 { |
|
2016 retval.resize_no_fill (0); |
|
2017 } |
|
2018 else if (len == 1 && n > 1 |
|
2019 && idx_arg.one_zero_only () |
|
2020 && idx_arg.ones_count () == n) |
|
2021 { |
4548
|
2022 retval.resize_and_fill (n, elem (0)); |
4517
|
2023 } |
|
2024 else |
|
2025 { |
|
2026 retval.resize_no_fill (n); |
|
2027 |
5275
|
2028 for (octave_idx_type i = 0; i < n; i++) |
4517
|
2029 { |
5275
|
2030 octave_idx_type ii = idx_arg.elem (i); |
4517
|
2031 if (ii >= len) |
|
2032 retval.elem (i) = rfv; |
|
2033 else |
|
2034 retval.elem (i) = elem (ii); |
|
2035 } |
|
2036 } |
|
2037 } |
|
2038 |
|
2039 // idx_vector::freeze() printed an error message for us. |
|
2040 |
|
2041 return retval; |
|
2042 } |
|
2043 |
|
2044 template <class T> |
|
2045 Array<T> |
|
2046 Array<T>::index2 (idx_vector& idx_arg, int resize_ok, const T& rfv) const |
|
2047 { |
|
2048 Array<T> retval; |
|
2049 |
4548
|
2050 assert (ndims () == 2); |
|
2051 |
5275
|
2052 octave_idx_type nr = dim1 (); |
|
2053 octave_idx_type nc = dim2 (); |
|
2054 |
|
2055 octave_idx_type orig_len = nr * nc; |
4517
|
2056 |
4832
|
2057 dim_vector idx_orig_dims = idx_arg.orig_dimensions (); |
|
2058 |
5275
|
2059 octave_idx_type idx_orig_rows = idx_arg.orig_rows (); |
|
2060 octave_idx_type idx_orig_columns = idx_arg.orig_columns (); |
4517
|
2061 |
|
2062 if (idx_arg.is_colon ()) |
|
2063 { |
|
2064 // Fast magic colon processing. |
|
2065 |
5275
|
2066 octave_idx_type result_nr = nr * nc; |
|
2067 octave_idx_type result_nc = 1; |
4517
|
2068 |
|
2069 retval = Array<T> (*this, dim_vector (result_nr, result_nc)); |
|
2070 } |
|
2071 else if (nr == 1 && nc == 1) |
|
2072 { |
|
2073 Array<T> tmp = Array<T>::index1 (idx_arg, resize_ok); |
|
2074 |
5275
|
2075 octave_idx_type len = tmp.length (); |
4828
|
2076 |
|
2077 if (len == 0 && idx_arg.one_zero_only ()) |
|
2078 retval = Array<T> (tmp, dim_vector (0, 0)); |
4876
|
2079 else if (len >= idx_orig_dims.numel ()) |
4832
|
2080 retval = Array<T> (tmp, idx_orig_dims); |
4517
|
2081 } |
|
2082 else if (nr == 1 || nc == 1) |
|
2083 { |
|
2084 // If indexing a vector with a matrix, return value has same |
|
2085 // shape as the index. Otherwise, it has same orientation as |
|
2086 // indexed object. |
|
2087 |
4828
|
2088 Array<T> tmp = Array<T>::index1 (idx_arg, resize_ok); |
4517
|
2089 |
5275
|
2090 octave_idx_type len = tmp.length (); |
4517
|
2091 |
4827
|
2092 if ((len != 0 && idx_arg.one_zero_only ()) |
|
2093 || idx_orig_rows == 1 || idx_orig_columns == 1) |
4517
|
2094 { |
4827
|
2095 if (nr == 1) |
|
2096 retval = Array<T> (tmp, dim_vector (1, len)); |
4517
|
2097 else |
4827
|
2098 retval = Array<T> (tmp, dim_vector (len, 1)); |
4517
|
2099 } |
4876
|
2100 else if (len >= idx_orig_dims.numel ()) |
4832
|
2101 retval = Array<T> (tmp, idx_orig_dims); |
4517
|
2102 } |
|
2103 else |
|
2104 { |
|
2105 if (liboctave_wfi_flag |
|
2106 && ! (idx_arg.one_zero_only () |
|
2107 && idx_orig_rows == nr |
|
2108 && idx_orig_columns == nc)) |
|
2109 (*current_liboctave_warning_handler) ("single index used for matrix"); |
|
2110 |
|
2111 // This code is only for indexing matrices. The vector |
|
2112 // cases are handled above. |
|
2113 |
|
2114 idx_arg.freeze (nr * nc, "matrix", resize_ok); |
|
2115 |
|
2116 if (idx_arg) |
|
2117 { |
5275
|
2118 octave_idx_type result_nr = idx_orig_rows; |
|
2119 octave_idx_type result_nc = idx_orig_columns; |
4517
|
2120 |
|
2121 if (idx_arg.one_zero_only ()) |
|
2122 { |
|
2123 result_nr = idx_arg.ones_count (); |
|
2124 result_nc = (result_nr > 0 ? 1 : 0); |
|
2125 } |
|
2126 |
|
2127 retval.resize_no_fill (result_nr, result_nc); |
|
2128 |
5275
|
2129 octave_idx_type k = 0; |
|
2130 for (octave_idx_type j = 0; j < result_nc; j++) |
4517
|
2131 { |
5275
|
2132 for (octave_idx_type i = 0; i < result_nr; i++) |
4517
|
2133 { |
5275
|
2134 octave_idx_type ii = idx_arg.elem (k++); |
4517
|
2135 if (ii >= orig_len) |
|
2136 retval.elem (i, j) = rfv; |
|
2137 else |
|
2138 { |
5275
|
2139 octave_idx_type fr = ii % nr; |
|
2140 octave_idx_type fc = (ii - fr) / nr; |
4517
|
2141 retval.elem (i, j) = elem (fr, fc); |
|
2142 } |
|
2143 } |
|
2144 } |
|
2145 } |
|
2146 // idx_vector::freeze() printed an error message for us. |
|
2147 } |
|
2148 |
|
2149 return retval; |
|
2150 } |
|
2151 |
|
2152 template <class T> |
|
2153 Array<T> |
4530
|
2154 Array<T>::indexN (idx_vector& ra_idx, int resize_ok, const T& rfv) const |
|
2155 { |
|
2156 Array<T> retval; |
|
2157 |
4747
|
2158 int n_dims = dims().length (); |
|
2159 |
5275
|
2160 octave_idx_type orig_len = dims().numel (); |
4530
|
2161 |
4757
|
2162 dim_vector idx_orig_dims = ra_idx.orig_dimensions (); |
4530
|
2163 |
|
2164 if (ra_idx.is_colon ()) |
|
2165 { |
4651
|
2166 // Fast magic colon processing. |
|
2167 |
|
2168 retval = Array<T> (*this, dim_vector (orig_len, 1)); |
4530
|
2169 } |
|
2170 else if (length () == 1) |
|
2171 { |
|
2172 // Only one element in array. |
|
2173 |
|
2174 Array<T> tmp = Array<T>::index (ra_idx, resize_ok); |
|
2175 |
5275
|
2176 octave_idx_type len = tmp.length (); |
4876
|
2177 |
|
2178 if (len != 0) |
|
2179 { |
|
2180 if (len >= idx_orig_dims.numel ()) |
|
2181 retval = Array<T> (tmp, idx_orig_dims); |
|
2182 } |
4530
|
2183 else |
4755
|
2184 retval = Array<T> (tmp, dim_vector (0, 0)); |
4530
|
2185 } |
|
2186 else if (vector_equivalent (dims ())) |
4757
|
2187 { |
4530
|
2188 // We're getting elements from a vector equivalent i.e. (1x4x1). |
|
2189 |
|
2190 Array<T> tmp = Array<T>::index (ra_idx, resize_ok); |
|
2191 |
5275
|
2192 octave_idx_type len = tmp.length (); |
4530
|
2193 |
|
2194 if (len == 0) |
|
2195 { |
4747
|
2196 if (idx_orig_dims.any_zero ()) |
4530
|
2197 retval = Array<T> (idx_orig_dims); |
|
2198 else |
|
2199 { |
|
2200 dim_vector new_dims; |
4673
|
2201 |
4530
|
2202 new_dims.resize (n_dims); |
|
2203 |
|
2204 for (int i = 0; i < n_dims; i++) |
|
2205 { |
|
2206 if ((dims ())(i) == 1) |
|
2207 new_dims(i) = 1; |
|
2208 } |
|
2209 |
4673
|
2210 new_dims.chop_trailing_singletons (); |
|
2211 |
4530
|
2212 retval = Array<T> (new_dims); |
|
2213 } |
|
2214 } |
|
2215 else |
|
2216 { |
4746
|
2217 if (vector_equivalent (idx_orig_dims)) |
4530
|
2218 { |
|
2219 // Array<int> index (n_dims, len); |
|
2220 dim_vector new_dims; |
|
2221 |
|
2222 new_dims.resize (n_dims); |
|
2223 |
|
2224 for (int i = 0; i < n_dims; i++) |
|
2225 { |
|
2226 if ((dims ())(i) == 1) |
|
2227 new_dims(i) = 1; |
|
2228 } |
|
2229 |
4673
|
2230 new_dims.chop_trailing_singletons (); |
|
2231 |
4530
|
2232 retval = Array<T> (tmp, new_dims); |
|
2233 } |
4876
|
2234 else if (tmp.length () >= idx_orig_dims.numel ()) |
4530
|
2235 retval = Array<T> (tmp, idx_orig_dims); |
|
2236 |
|
2237 (*current_liboctave_error_handler) |
|
2238 ("I do not know what to do here yet!"); |
|
2239 } |
|
2240 } |
4651
|
2241 else |
4530
|
2242 { |
4651
|
2243 if (liboctave_wfi_flag |
|
2244 && ! (ra_idx.is_colon () |
4747
|
2245 || (ra_idx.one_zero_only () && idx_orig_dims == dims ()))) |
4651
|
2246 (*current_liboctave_warning_handler) |
|
2247 ("single index used for N-d array"); |
4530
|
2248 |
|
2249 ra_idx.freeze (orig_len, "nd-array", resize_ok); |
|
2250 |
|
2251 if (ra_idx) |
4757
|
2252 { |
4530
|
2253 dim_vector result_dims (idx_orig_dims); |
|
2254 |
|
2255 if (ra_idx.one_zero_only ()) |
|
2256 { |
4651
|
2257 result_dims.resize (2); |
5275
|
2258 octave_idx_type ntot = ra_idx.ones_count (); |
4651
|
2259 result_dims(0) = ntot; |
|
2260 result_dims(1) = (ntot > 0 ? 1 : 0); |
4530
|
2261 } |
|
2262 |
4673
|
2263 result_dims.chop_trailing_singletons (); |
|
2264 |
4530
|
2265 retval.resize (result_dims); |
|
2266 |
5275
|
2267 octave_idx_type n = result_dims.numel (); |
4530
|
2268 |
|
2269 int r_dims = result_dims.length (); |
|
2270 |
5275
|
2271 Array<octave_idx_type> iidx (r_dims, 0); |
|
2272 |
|
2273 octave_idx_type k = 0; |
|
2274 |
|
2275 for (octave_idx_type i = 0; i < n; i++) |
4530
|
2276 { |
5275
|
2277 octave_idx_type ii = ra_idx.elem (k++); |
4530
|
2278 |
|
2279 if (ii >= orig_len) |
4587
|
2280 retval.elem (iidx) = rfv; |
4530
|
2281 else |
|
2282 { |
|
2283 Array<int> temp = get_ra_idx (ii, dims ()); |
|
2284 |
4587
|
2285 retval.elem (iidx) = elem (temp); |
4530
|
2286 } |
|
2287 if (i != n - 1) |
4587
|
2288 increment_index (iidx, result_dims); |
4530
|
2289 } |
|
2290 } |
|
2291 } |
|
2292 |
|
2293 return retval; |
|
2294 } |
|
2295 |
|
2296 template <class T> |
|
2297 Array<T> |
4517
|
2298 Array<T>::index (idx_vector& idx_i, idx_vector& idx_j, int resize_ok, |
|
2299 const T& rfv) const |
|
2300 { |
|
2301 Array<T> retval; |
|
2302 |
4548
|
2303 assert (ndims () == 2); |
|
2304 |
5275
|
2305 octave_idx_type nr = dim1 (); |
|
2306 octave_idx_type nc = dim2 (); |
|
2307 |
|
2308 octave_idx_type n = idx_i.freeze (nr, "row", resize_ok); |
|
2309 octave_idx_type m = idx_j.freeze (nc, "column", resize_ok); |
4517
|
2310 |
|
2311 if (idx_i && idx_j) |
|
2312 { |
|
2313 if (idx_i.orig_empty () || idx_j.orig_empty () || n == 0 || m == 0) |
|
2314 { |
|
2315 retval.resize_no_fill (n, m); |
|
2316 } |
|
2317 else if (idx_i.is_colon_equiv (nr) && idx_j.is_colon_equiv (nc)) |
|
2318 { |
|
2319 retval = *this; |
|
2320 } |
|
2321 else |
|
2322 { |
|
2323 retval.resize_no_fill (n, m); |
|
2324 |
5275
|
2325 for (octave_idx_type j = 0; j < m; j++) |
4517
|
2326 { |
5275
|
2327 octave_idx_type jj = idx_j.elem (j); |
|
2328 for (octave_idx_type i = 0; i < n; i++) |
4517
|
2329 { |
5275
|
2330 octave_idx_type ii = idx_i.elem (i); |
4517
|
2331 if (ii >= nr || jj >= nc) |
|
2332 retval.elem (i, j) = rfv; |
|
2333 else |
|
2334 retval.elem (i, j) = elem (ii, jj); |
|
2335 } |
|
2336 } |
|
2337 } |
|
2338 } |
|
2339 |
|
2340 // idx_vector::freeze() printed an error message for us. |
|
2341 |
|
2342 return retval; |
|
2343 } |
|
2344 |
|
2345 template <class T> |
|
2346 Array<T> |
4661
|
2347 Array<T>::index (Array<idx_vector>& ra_idx, int resize_ok, const T&) const |
4517
|
2348 { |
4530
|
2349 // This function handles all calls with more than one idx. |
|
2350 // For (3x3x3), the call can be A(2,5), A(2,:,:), A(3,2,3) etc. |
|
2351 |
4517
|
2352 Array<T> retval; |
|
2353 |
|
2354 int n_dims = dimensions.length (); |
|
2355 |
4737
|
2356 // Remove trailing singletons in ra_idx, but leave at least ndims |
|
2357 // elements. |
|
2358 |
5275
|
2359 octave_idx_type ra_idx_len = ra_idx.length (); |
4737
|
2360 |
4887
|
2361 bool trim_trailing_singletons = true; |
5275
|
2362 for (octave_idx_type j = ra_idx_len; j > n_dims; j--) |
4737
|
2363 { |
4887
|
2364 idx_vector iidx = ra_idx (ra_idx_len-1); |
|
2365 if (iidx.capacity () == 1 && trim_trailing_singletons) |
4737
|
2366 ra_idx_len--; |
|
2367 else |
4887
|
2368 trim_trailing_singletons = false; |
|
2369 |
5275
|
2370 for (octave_idx_type i = 0; i < iidx.capacity (); i++) |
4887
|
2371 if (iidx (i) != 0) |
|
2372 { |
|
2373 (*current_liboctave_error_handler) |
|
2374 ("index exceeds N-d array dimensions"); |
|
2375 |
|
2376 return retval; |
|
2377 } |
4737
|
2378 } |
|
2379 |
|
2380 ra_idx.resize (ra_idx_len); |
|
2381 |
4887
|
2382 dim_vector new_dims = dims (); |
|
2383 dim_vector frozen_lengths; |
|
2384 |
|
2385 if (! any_orig_empty (ra_idx) && ra_idx_len < n_dims) |
|
2386 frozen_lengths = short_freeze (ra_idx, dimensions, resize_ok); |
|
2387 else |
4517
|
2388 { |
4887
|
2389 new_dims.resize (ra_idx_len, 1); |
|
2390 frozen_lengths = freeze (ra_idx, new_dims, resize_ok); |
4530
|
2391 } |
|
2392 |
4887
|
2393 if (all_ok (ra_idx)) |
4530
|
2394 { |
4887
|
2395 if (any_orig_empty (ra_idx) || frozen_lengths.any_zero ()) |
|
2396 { |
|
2397 frozen_lengths.chop_trailing_singletons (); |
|
2398 |
|
2399 retval.resize (frozen_lengths); |
|
2400 } |
|
2401 else if (frozen_lengths.length () == n_dims |
|
2402 && all_colon_equiv (ra_idx, dimensions)) |
|
2403 { |
|
2404 retval = *this; |
|
2405 } |
|
2406 else |
4517
|
2407 { |
4887
|
2408 dim_vector frozen_lengths_for_resize = frozen_lengths; |
|
2409 |
|
2410 frozen_lengths_for_resize.chop_trailing_singletons (); |
|
2411 |
|
2412 retval.resize (frozen_lengths_for_resize); |
|
2413 |
5275
|
2414 octave_idx_type n = retval.length (); |
|
2415 |
|
2416 Array<octave_idx_type> result_idx (ra_idx.length (), 0); |
|
2417 |
|
2418 Array<octave_idx_type> elt_idx; |
|
2419 |
|
2420 for (octave_idx_type i = 0; i < n; i++) |
4530
|
2421 { |
4887
|
2422 elt_idx = get_elt_idx (ra_idx, result_idx); |
|
2423 |
5275
|
2424 octave_idx_type numelem_elt = get_scalar_idx (elt_idx, new_dims); |
4887
|
2425 |
|
2426 if (numelem_elt > length () || numelem_elt < 0) |
|
2427 (*current_liboctave_error_handler) |
|
2428 ("invalid N-d array index"); |
|
2429 else |
|
2430 retval.elem (i) = elem (numelem_elt); |
|
2431 |
|
2432 increment_index (result_idx, frozen_lengths); |
|
2433 |
4517
|
2434 } |
|
2435 } |
|
2436 } |
|
2437 |
|
2438 return retval; |
|
2439 } |
|
2440 |
|
2441 // XXX FIXME XXX -- this is a mess. |
|
2442 |
|
2443 template <class LT, class RT> |
|
2444 int |
|
2445 assign (Array<LT>& lhs, const Array<RT>& rhs, const LT& rfv) |
|
2446 { |
|
2447 int retval = 0; |
|
2448 |
|
2449 switch (lhs.ndims ()) |
|
2450 { |
|
2451 case 0: |
|
2452 { |
|
2453 if (lhs.index_count () < 3) |
|
2454 { |
|
2455 // kluge... |
|
2456 lhs.resize_no_fill (0, 0); |
|
2457 retval = assign2 (lhs, rhs, rfv); |
|
2458 } |
|
2459 else |
|
2460 retval = assignN (lhs, rhs, rfv); |
|
2461 } |
|
2462 break; |
|
2463 |
|
2464 case 1: |
|
2465 { |
|
2466 if (lhs.index_count () > 1) |
|
2467 retval = assignN (lhs, rhs, rfv); |
|
2468 else |
|
2469 retval = assign1 (lhs, rhs, rfv); |
|
2470 } |
|
2471 break; |
|
2472 |
|
2473 case 2: |
|
2474 { |
|
2475 if (lhs.index_count () > 2) |
|
2476 retval = assignN (lhs, rhs, rfv); |
|
2477 else |
|
2478 retval = assign2 (lhs, rhs, rfv); |
|
2479 } |
|
2480 break; |
|
2481 |
|
2482 default: |
|
2483 retval = assignN (lhs, rhs, rfv); |
|
2484 break; |
|
2485 } |
|
2486 |
|
2487 return retval; |
|
2488 } |
|
2489 |
|
2490 template <class LT, class RT> |
|
2491 int |
|
2492 assign1 (Array<LT>& lhs, const Array<RT>& rhs, const LT& rfv) |
|
2493 { |
|
2494 int retval = 1; |
|
2495 |
|
2496 idx_vector *tmp = lhs.get_idx (); |
|
2497 |
|
2498 idx_vector lhs_idx = tmp[0]; |
|
2499 |
5275
|
2500 octave_idx_type lhs_len = lhs.length (); |
|
2501 octave_idx_type rhs_len = rhs.length (); |
|
2502 |
|
2503 octave_idx_type n = lhs_idx.freeze (lhs_len, "vector", true, liboctave_wrore_flag); |
4517
|
2504 |
|
2505 if (n != 0) |
|
2506 { |
|
2507 if (rhs_len == n || rhs_len == 1) |
|
2508 { |
5275
|
2509 octave_idx_type max_idx = lhs_idx.max () + 1; |
4517
|
2510 if (max_idx > lhs_len) |
4548
|
2511 lhs.resize_and_fill (max_idx, rfv); |
4517
|
2512 } |
|
2513 |
|
2514 if (rhs_len == n) |
|
2515 { |
5275
|
2516 for (octave_idx_type i = 0; i < n; i++) |
4517
|
2517 { |
5275
|
2518 octave_idx_type ii = lhs_idx.elem (i); |
4517
|
2519 lhs.elem (ii) = rhs.elem (i); |
|
2520 } |
|
2521 } |
|
2522 else if (rhs_len == 1) |
|
2523 { |
|
2524 RT scalar = rhs.elem (0); |
|
2525 |
5275
|
2526 for (octave_idx_type i = 0; i < n; i++) |
4517
|
2527 { |
5275
|
2528 octave_idx_type ii = lhs_idx.elem (i); |
4517
|
2529 lhs.elem (ii) = scalar; |
|
2530 } |
|
2531 } |
|
2532 else |
|
2533 { |
|
2534 (*current_liboctave_error_handler) |
|
2535 ("A(I) = X: X must be a scalar or a vector with same length as I"); |
|
2536 |
|
2537 retval = 0; |
|
2538 } |
|
2539 } |
|
2540 else if (lhs_idx.is_colon ()) |
|
2541 { |
|
2542 if (lhs_len == 0) |
|
2543 { |
|
2544 lhs.resize_no_fill (rhs_len); |
|
2545 |
5275
|
2546 for (octave_idx_type i = 0; i < rhs_len; i++) |
4517
|
2547 lhs.elem (i) = rhs.elem (i); |
|
2548 } |
|
2549 else |
|
2550 (*current_liboctave_error_handler) |
|
2551 ("A(:) = X: A must be the same size as X"); |
|
2552 } |
|
2553 else if (! (rhs_len == 1 || rhs_len == 0)) |
|
2554 { |
|
2555 (*current_liboctave_error_handler) |
|
2556 ("A([]) = X: X must also be an empty matrix or a scalar"); |
|
2557 |
|
2558 retval = 0; |
|
2559 } |
|
2560 |
|
2561 lhs.clear_index (); |
|
2562 |
|
2563 return retval; |
|
2564 } |
|
2565 |
|
2566 #define MAYBE_RESIZE_LHS \ |
|
2567 do \ |
|
2568 { \ |
5275
|
2569 octave_idx_type max_row_idx = idx_i_is_colon ? rhs_nr : idx_i.max () + 1; \ |
|
2570 octave_idx_type max_col_idx = idx_j_is_colon ? rhs_nc : idx_j.max () + 1; \ |
4517
|
2571 \ |
5275
|
2572 octave_idx_type new_nr = max_row_idx > lhs_nr ? max_row_idx : lhs_nr; \ |
|
2573 octave_idx_type new_nc = max_col_idx > lhs_nc ? max_col_idx : lhs_nc; \ |
4517
|
2574 \ |
|
2575 lhs.resize_and_fill (new_nr, new_nc, rfv); \ |
|
2576 } \ |
|
2577 while (0) |
|
2578 |
|
2579 template <class LT, class RT> |
|
2580 int |
|
2581 assign2 (Array<LT>& lhs, const Array<RT>& rhs, const LT& rfv) |
|
2582 { |
|
2583 int retval = 1; |
|
2584 |
|
2585 int n_idx = lhs.index_count (); |
|
2586 |
5275
|
2587 octave_idx_type lhs_nr = lhs.rows (); |
|
2588 octave_idx_type lhs_nc = lhs.cols (); |
4517
|
2589 |
5047
|
2590 Array<RT> xrhs = rhs; |
|
2591 |
5275
|
2592 octave_idx_type rhs_nr = xrhs.rows (); |
|
2593 octave_idx_type rhs_nc = xrhs.cols (); |
5047
|
2594 |
|
2595 if (xrhs.ndims () > 2) |
4707
|
2596 { |
5047
|
2597 xrhs = xrhs.squeeze (); |
|
2598 |
|
2599 dim_vector dv_tmp = xrhs.dims (); |
4709
|
2600 |
4708
|
2601 switch (dv_tmp.length ()) |
4707
|
2602 { |
4708
|
2603 case 1: |
5047
|
2604 // XXX FIXME XXX -- this case should be unnecessary, because |
|
2605 // squeeze should always return an object with 2 dimensions. |
4708
|
2606 if (rhs_nr == 1) |
|
2607 rhs_nc = dv_tmp.elem (0); |
|
2608 break; |
4709
|
2609 |
4708
|
2610 case 2: |
4707
|
2611 rhs_nr = dv_tmp.elem (0); |
|
2612 rhs_nc = dv_tmp.elem (1); |
4708
|
2613 break; |
|
2614 |
|
2615 default: |
|
2616 (*current_liboctave_error_handler) |
|
2617 ("Array<T>::assign2: Dimension mismatch"); |
4709
|
2618 return 0; |
4707
|
2619 } |
|
2620 } |
4517
|
2621 |
|
2622 idx_vector *tmp = lhs.get_idx (); |
|
2623 |
|
2624 idx_vector idx_i; |
|
2625 idx_vector idx_j; |
|
2626 |
|
2627 if (n_idx > 1) |
|
2628 idx_j = tmp[1]; |
|
2629 |
|
2630 if (n_idx > 0) |
|
2631 idx_i = tmp[0]; |
|
2632 |
|
2633 if (n_idx == 2) |
|
2634 { |
5275
|
2635 octave_idx_type n = idx_i.freeze (lhs_nr, "row", true, liboctave_wrore_flag); |
|
2636 |
|
2637 octave_idx_type m = idx_j.freeze (lhs_nc, "column", true, liboctave_wrore_flag); |
4517
|
2638 |
|
2639 int idx_i_is_colon = idx_i.is_colon (); |
|
2640 int idx_j_is_colon = idx_j.is_colon (); |
|
2641 |
|
2642 if (idx_i_is_colon) |
|
2643 n = lhs_nr > 0 ? lhs_nr : rhs_nr; |
|
2644 |
|
2645 if (idx_j_is_colon) |
|
2646 m = lhs_nc > 0 ? lhs_nc : rhs_nc; |
|
2647 |
|
2648 if (idx_i && idx_j) |
|
2649 { |
|
2650 if (rhs_nr == 0 && rhs_nc == 0) |
|
2651 { |
|
2652 lhs.maybe_delete_elements (idx_i, idx_j); |
|
2653 } |
|
2654 else |
|
2655 { |
4534
|
2656 if (rhs_nr == 1 && rhs_nc == 1 && n >= 0 && m >= 0) |
4517
|
2657 { |
4534
|
2658 // No need to do anything if either of the indices |
|
2659 // are empty. |
|
2660 |
|
2661 if (n > 0 && m > 0) |
4517
|
2662 { |
4534
|
2663 MAYBE_RESIZE_LHS; |
|
2664 |
5047
|
2665 RT scalar = xrhs.elem (0, 0); |
4534
|
2666 |
5275
|
2667 for (octave_idx_type j = 0; j < m; j++) |
4517
|
2668 { |
5275
|
2669 octave_idx_type jj = idx_j.elem (j); |
|
2670 for (octave_idx_type i = 0; i < n; i++) |
4534
|
2671 { |
5275
|
2672 octave_idx_type ii = idx_i.elem (i); |
4534
|
2673 lhs.elem (ii, jj) = scalar; |
|
2674 } |
4517
|
2675 } |
|
2676 } |
|
2677 } |
|
2678 else if (n == rhs_nr && m == rhs_nc) |
|
2679 { |
|
2680 if (n > 0 && m > 0) |
|
2681 { |
|
2682 MAYBE_RESIZE_LHS; |
|
2683 |
5275
|
2684 for (octave_idx_type j = 0; j < m; j++) |
4517
|
2685 { |
5275
|
2686 octave_idx_type jj = idx_j.elem (j); |
|
2687 for (octave_idx_type i = 0; i < n; i++) |
4517
|
2688 { |
5275
|
2689 octave_idx_type ii = idx_i.elem (i); |
5047
|
2690 lhs.elem (ii, jj) = xrhs.elem (i, j); |
4517
|
2691 } |
|
2692 } |
|
2693 } |
|
2694 } |
|
2695 else if (n == 0 && m == 0) |
|
2696 { |
|
2697 if (! ((rhs_nr == 1 && rhs_nc == 1) |
5039
|
2698 || (rhs_nr == 0 || rhs_nc == 0))) |
4517
|
2699 { |
|
2700 (*current_liboctave_error_handler) |
|
2701 ("A([], []) = X: X must be an empty matrix or a scalar"); |
|
2702 |
|
2703 retval = 0; |
|
2704 } |
|
2705 } |
|
2706 else |
|
2707 { |
|
2708 (*current_liboctave_error_handler) |
|
2709 ("A(I, J) = X: X must be a scalar or the number of elements in I must"); |
|
2710 (*current_liboctave_error_handler) |
|
2711 ("match the number of rows in X and the number of elements in J must"); |
|
2712 (*current_liboctave_error_handler) |
|
2713 ("match the number of columns in X"); |
|
2714 |
|
2715 retval = 0; |
|
2716 } |
|
2717 } |
|
2718 } |
|
2719 // idx_vector::freeze() printed an error message for us. |
|
2720 } |
|
2721 else if (n_idx == 1) |
|
2722 { |
|
2723 int lhs_is_empty = lhs_nr == 0 || lhs_nc == 0; |
|
2724 |
|
2725 if (lhs_is_empty || (lhs_nr == 1 && lhs_nc == 1)) |
|
2726 { |
5275
|
2727 octave_idx_type lhs_len = lhs.length (); |
|
2728 |
|
2729 octave_idx_type n = idx_i.freeze (lhs_len, 0, true, liboctave_wrore_flag); |
4517
|
2730 |
|
2731 if (idx_i) |
|
2732 { |
|
2733 if (rhs_nr == 0 && rhs_nc == 0) |
|
2734 { |
|
2735 if (n != 0 && (lhs_nr != 0 || lhs_nc != 0)) |
|
2736 lhs.maybe_delete_elements (idx_i); |
|
2737 } |
|
2738 else |
|
2739 { |
|
2740 if (liboctave_wfi_flag) |
|
2741 { |
|
2742 if (lhs_is_empty |
|
2743 && idx_i.is_colon () |
|
2744 && ! (rhs_nr == 1 || rhs_nc == 1)) |
|
2745 { |
|
2746 (*current_liboctave_warning_handler) |
|
2747 ("A(:) = X: X is not a vector or scalar"); |
|
2748 } |
|
2749 else |
|
2750 { |
5275
|
2751 octave_idx_type idx_nr = idx_i.orig_rows (); |
|
2752 octave_idx_type idx_nc = idx_i.orig_columns (); |
4517
|
2753 |
|
2754 if (! (rhs_nr == idx_nr && rhs_nc == idx_nc)) |
|
2755 (*current_liboctave_warning_handler) |
|
2756 ("A(I) = X: X does not have same shape as I"); |
|
2757 } |
|
2758 } |
|
2759 |
5047
|
2760 if (assign1 (lhs, xrhs, rfv)) |
4517
|
2761 { |
5275
|
2762 octave_idx_type len = lhs.length (); |
4517
|
2763 |
|
2764 if (len > 0) |
|
2765 { |
|
2766 // The following behavior is much simplified |
|
2767 // over previous versions of Octave. It |
|
2768 // seems to be compatible with Matlab. |
|
2769 |
|
2770 lhs.dimensions = dim_vector (1, lhs.length ()); |
|
2771 } |
|
2772 else |
|
2773 lhs.dimensions = dim_vector (0, 0); |
|
2774 } |
|
2775 else |
|
2776 retval = 0; |
|
2777 } |
|
2778 } |
|
2779 // idx_vector::freeze() printed an error message for us. |
|
2780 } |
|
2781 else if (lhs_nr == 1) |
|
2782 { |
|
2783 idx_i.freeze (lhs_nc, "vector", true, liboctave_wrore_flag); |
|
2784 |
|
2785 if (idx_i) |
|
2786 { |
|
2787 if (rhs_nr == 0 && rhs_nc == 0) |
|
2788 lhs.maybe_delete_elements (idx_i); |
|
2789 else |
|
2790 { |
5047
|
2791 if (assign1 (lhs, xrhs, rfv)) |
4517
|
2792 lhs.dimensions = dim_vector (1, lhs.length ()); |
|
2793 else |
|
2794 retval = 0; |
|
2795 } |
|
2796 } |
|
2797 // idx_vector::freeze() printed an error message for us. |
|
2798 } |
|
2799 else if (lhs_nc == 1) |
|
2800 { |
|
2801 idx_i.freeze (lhs_nr, "vector", true, liboctave_wrore_flag); |
|
2802 |
|
2803 if (idx_i) |
|
2804 { |
|
2805 if (rhs_nr == 0 && rhs_nc == 0) |
|
2806 lhs.maybe_delete_elements (idx_i); |
|
2807 else |
|
2808 { |
5047
|
2809 if (assign1 (lhs, xrhs, rfv)) |
4517
|
2810 lhs.dimensions = dim_vector (lhs.length (), 1); |
|
2811 else |
|
2812 retval = 0; |
|
2813 } |
|
2814 } |
|
2815 // idx_vector::freeze() printed an error message for us. |
|
2816 } |
|
2817 else |
|
2818 { |
|
2819 if (liboctave_wfi_flag |
|
2820 && ! (idx_i.is_colon () |
|
2821 || (idx_i.one_zero_only () |
|
2822 && idx_i.orig_rows () == lhs_nr |
|
2823 && idx_i.orig_columns () == lhs_nc))) |
|
2824 (*current_liboctave_warning_handler) |
|
2825 ("single index used for matrix"); |
|
2826 |
5275
|
2827 octave_idx_type len = idx_i.freeze (lhs_nr * lhs_nc, "matrix"); |
4517
|
2828 |
|
2829 if (idx_i) |
|
2830 { |
4756
|
2831 if (rhs_nr == 0 && rhs_nc == 0) |
|
2832 lhs.maybe_delete_elements (idx_i); |
|
2833 else if (len == 0) |
4517
|
2834 { |
|
2835 if (! ((rhs_nr == 1 && rhs_nc == 1) |
5039
|
2836 || (rhs_nr == 0 || rhs_nc == 0))) |
4517
|
2837 (*current_liboctave_error_handler) |
|
2838 ("A([]) = X: X must be an empty matrix or scalar"); |
|
2839 } |
|
2840 else if (len == rhs_nr * rhs_nc) |
|
2841 { |
5275
|
2842 octave_idx_type k = 0; |
|
2843 for (octave_idx_type j = 0; j < rhs_nc; j++) |
4517
|
2844 { |
5275
|
2845 for (octave_idx_type i = 0; i < rhs_nr; i++) |
4517
|
2846 { |
5275
|
2847 octave_idx_type ii = idx_i.elem (k++); |
|
2848 octave_idx_type fr = ii % lhs_nr; |
|
2849 octave_idx_type fc = (ii - fr) / lhs_nr; |
5047
|
2850 lhs.elem (fr, fc) = xrhs.elem (i, j); |
4517
|
2851 } |
|
2852 } |
|
2853 } |
4716
|
2854 else if (rhs_nr == 1 && rhs_nc == 1) |
4517
|
2855 { |
|
2856 RT scalar = rhs.elem (0, 0); |
|
2857 |
5275
|
2858 for (octave_idx_type i = 0; i < len; i++) |
4517
|
2859 { |
5275
|
2860 octave_idx_type ii = idx_i.elem (i); |
4716
|
2861 lhs.elem (ii) = scalar; |
4517
|
2862 } |
|
2863 } |
|
2864 else |
|
2865 { |
|
2866 (*current_liboctave_error_handler) |
|
2867 ("A(I) = X: X must be a scalar or a matrix with the same size as I"); |
|
2868 |
|
2869 retval = 0; |
|
2870 } |
|
2871 } |
|
2872 // idx_vector::freeze() printed an error message for us. |
|
2873 } |
|
2874 } |
|
2875 else |
|
2876 { |
|
2877 (*current_liboctave_error_handler) |
|
2878 ("invalid number of indices for matrix expression"); |
|
2879 |
|
2880 retval = 0; |
|
2881 } |
|
2882 |
|
2883 lhs.clear_index (); |
|
2884 |
|
2885 return retval; |
|
2886 } |
|
2887 |
|
2888 template <class LT, class RT> |
|
2889 int |
|
2890 assignN (Array<LT>& lhs, const Array<RT>& rhs, const LT& rfv) |
|
2891 { |
|
2892 int retval = 1; |
|
2893 |
4746
|
2894 dim_vector rhs_dims = rhs.dims (); |
|
2895 |
5275
|
2896 octave_idx_type rhs_dims_len = rhs_dims.length (); |
4746
|
2897 |
|
2898 bool rhs_is_scalar = is_scalar (rhs_dims); |
|
2899 |
4517
|
2900 int n_idx = lhs.index_count (); |
|
2901 |
4745
|
2902 idx_vector *idx_vex = lhs.get_idx (); |
|
2903 |
|
2904 Array<idx_vector> idx = conv_to_array (idx_vex, n_idx); |
4517
|
2905 |
4743
|
2906 if (rhs_dims_len == 2 && rhs_dims(0) == 0 && rhs_dims(1) == 0) |
4517
|
2907 { |
|
2908 lhs.maybe_delete_elements (idx, rfv); |
|
2909 } |
5285
|
2910 else if (n_idx == 0) |
|
2911 { |
|
2912 (*current_liboctave_error_handler) |
|
2913 ("invalid number of indices for matrix expression"); |
|
2914 |
|
2915 retval = 0; |
|
2916 } |
4657
|
2917 else if (n_idx == 1) |
4517
|
2918 { |
4657
|
2919 idx_vector iidx = idx(0); |
|
2920 |
|
2921 if (liboctave_wfi_flag |
|
2922 && ! (iidx.is_colon () |
|
2923 || (iidx.one_zero_only () |
|
2924 && iidx.orig_dimensions () == lhs.dims ()))) |
|
2925 (*current_liboctave_warning_handler) |
4746
|
2926 ("single index used for N-d array"); |
4657
|
2927 |
5275
|
2928 octave_idx_type lhs_len = lhs.length (); |
|
2929 |
|
2930 octave_idx_type len = iidx.freeze (lhs_len, "N-d arrray"); |
4657
|
2931 |
|
2932 if (iidx) |
4533
|
2933 { |
4657
|
2934 if (len == 0) |
4656
|
2935 { |
5039
|
2936 if (! (rhs_dims.all_ones () || rhs_dims.any_zero ())) |
4743
|
2937 { |
|
2938 (*current_liboctave_error_handler) |
|
2939 ("A([]) = X: X must be an empty matrix or scalar"); |
|
2940 |
|
2941 retval = 0; |
|
2942 } |
4657
|
2943 } |
|
2944 else if (len == rhs.length ()) |
|
2945 { |
5275
|
2946 for (octave_idx_type i = 0; i < len; i++) |
4656
|
2947 { |
5275
|
2948 octave_idx_type ii = iidx.elem (i); |
4657
|
2949 |
|
2950 lhs.elem (ii) = rhs.elem (i); |
4656
|
2951 } |
|
2952 } |
4716
|
2953 else if (rhs_is_scalar) |
4657
|
2954 { |
|
2955 RT scalar = rhs.elem (0); |
|
2956 |
5275
|
2957 for (octave_idx_type i = 0; i < len; i++) |
4657
|
2958 { |
5275
|
2959 octave_idx_type ii = iidx.elem (i); |
4657
|
2960 |
|
2961 lhs.elem (ii) = scalar; |
|
2962 } |
|
2963 } |
|
2964 else |
|
2965 { |
|
2966 (*current_liboctave_error_handler) |
4702
|
2967 ("A(I) = X: X must be a scalar or a matrix with the same size as I"); |
|
2968 |
4657
|
2969 retval = 0; |
|
2970 } |
|
2971 |
4656
|
2972 // idx_vector::freeze() printed an error message for us. |
4533
|
2973 } |
4702
|
2974 } |
4743
|
2975 else |
4702
|
2976 { |
4746
|
2977 // Maybe expand to more dimensions. |
|
2978 |
|
2979 dim_vector lhs_dims = lhs.dims (); |
|
2980 |
5275
|
2981 octave_idx_type lhs_dims_len = lhs_dims.length (); |
4746
|
2982 |
|
2983 dim_vector final_lhs_dims = lhs_dims; |
|
2984 |
|
2985 dim_vector frozen_len; |
|
2986 |
5275
|
2987 octave_idx_type orig_lhs_dims_len = lhs_dims_len; |
4747
|
2988 |
|
2989 bool orig_empty = lhs_dims.all_zero (); |
|
2990 |
|
2991 if (n_idx < lhs_dims_len) |
4517
|
2992 { |
5052
|
2993 // Collapse dimensions beyond last index. Note that we |
|
2994 // delay resizing LHS until we know that the assignment will |
|
2995 // succeed. |
4747
|
2996 |
|
2997 if (liboctave_wfi_flag && ! (idx(n_idx-1).is_colon ())) |
|
2998 (*current_liboctave_warning_handler) |
|
2999 ("fewer indices than dimensions for N-d array"); |
|
3000 |
|
3001 for (int i = n_idx; i < lhs_dims_len; i++) |
|
3002 lhs_dims(n_idx-1) *= lhs_dims(i); |
|
3003 |
|
3004 lhs_dims.resize (n_idx); |
|
3005 |
|
3006 lhs_dims_len = lhs_dims.length (); |
|
3007 } |
|
3008 |
|
3009 // Resize. |
|
3010 |
|
3011 dim_vector new_dims; |
|
3012 new_dims.resize (n_idx); |
|
3013 |
5264
|
3014 if (orig_empty) |
4747
|
3015 { |
5264
|
3016 int k = 0; |
|
3017 for (int i = 0; i < n_idx; i++) |
4746
|
3018 { |
4747
|
3019 // If index is a colon, resizing to RHS dimensions is |
|
3020 // allowed because we started out empty. |
4746
|
3021 |
5264
|
3022 if (idx(i).is_colon ()) |
|
3023 { |
|
3024 if (k < rhs_dims.length ()) |
|
3025 new_dims(i) = rhs_dims(k++); |
|
3026 else |
|
3027 { |
|
3028 (*current_liboctave_error_handler) |
|
3029 ("A(IDX-LIST) = RHS: A previously undefined and more colons in IDX-LIST than dimensions for RHS"); |
|
3030 return retval; |
|
3031 } |
|
3032 } |
|
3033 else |
|
3034 new_dims(i) = idx(i).max () + 1; |
4746
|
3035 } |
5264
|
3036 } |
|
3037 else |
|
3038 { |
|
3039 for (int i = 0; i < n_idx; i++) |
4746
|
3040 { |
4747
|
3041 // We didn't start out with all zero dimensions, so if |
|
3042 // index is a colon, it refers to the current LHS |
|
3043 // dimension. Otherwise, it is OK to enlarge to a |
5264
|
3044 // dimension given by the largest index, but if that |
4898
|
3045 // index is a colon the new dimension is singleton. |
4749
|
3046 |
|
3047 if (i < lhs_dims_len |
|
3048 && (idx(i).is_colon () || idx(i).max () < lhs_dims(i))) |
|
3049 new_dims(i) = lhs_dims(i); |
|
3050 else if (! idx(i).is_colon ()) |
|
3051 new_dims(i) = idx(i).max () + 1; |
|
3052 else |
4898
|
3053 new_dims(i) = 1; |
4745
|
3054 } |
4747
|
3055 } |
|
3056 |
4749
|
3057 if (retval != 0) |
4747
|
3058 { |
4749
|
3059 if (! orig_empty |
|
3060 && n_idx < orig_lhs_dims_len |
|
3061 && new_dims(n_idx-1) != lhs_dims(n_idx-1)) |
4702
|
3062 { |
4749
|
3063 // We reshaped and the last dimension changed. This has to |
|
3064 // be an error, because we don't know how to undo that |
|
3065 // later... |
|
3066 |
|
3067 (*current_liboctave_error_handler) |
|
3068 ("array index %d (= %d) for assignment requires invalid resizing operation", |
|
3069 n_idx, new_dims(n_idx-1)); |
|
3070 |
|
3071 retval = 0; |
4743
|
3072 } |
|
3073 else |
|
3074 { |
5052
|
3075 // Determine final dimensions for LHS and reset the |
|
3076 // current size of the LHS. Note that we delay actually |
|
3077 // resizing LHS until we know that the assignment will |
|
3078 // succeed. |
|
3079 |
4749
|
3080 if (n_idx < orig_lhs_dims_len) |
4743
|
3081 { |
4749
|
3082 for (int i = 0; i < n_idx-1; i++) |
|
3083 final_lhs_dims(i) = new_dims(i); |
4747
|
3084 } |
|
3085 else |
4749
|
3086 final_lhs_dims = new_dims; |
|
3087 |
5052
|
3088 lhs_dims = new_dims; |
4796
|
3089 |
4749
|
3090 lhs_dims_len = lhs_dims.length (); |
|
3091 |
|
3092 frozen_len = freeze (idx, lhs_dims, true); |
|
3093 |
|
3094 if (rhs_is_scalar) |
4747
|
3095 { |
5052
|
3096 lhs.resize_and_fill (new_dims, rfv); |
|
3097 |
4747
|
3098 if (! final_lhs_dims.any_zero ()) |
|
3099 { |
5275
|
3100 octave_idx_type n = Array<LT>::get_size (frozen_len); |
|
3101 |
|
3102 Array<octave_idx_type> result_idx (lhs_dims_len, 0); |
4747
|
3103 |
4749
|
3104 RT scalar = rhs.elem (0); |
|
3105 |
5275
|
3106 for (octave_idx_type i = 0; i < n; i++) |
4747
|
3107 { |
5275
|
3108 Array<octave_idx_type> elt_idx = get_elt_idx (idx, result_idx); |
4747
|
3109 |
4749
|
3110 lhs.elem (elt_idx) = scalar; |
4747
|
3111 |
|
3112 increment_index (result_idx, frozen_len); |
|
3113 } |
|
3114 } |
4743
|
3115 } |
4749
|
3116 else |
|
3117 { |
|
3118 // RHS is matrix or higher dimension. |
|
3119 |
5275
|
3120 octave_idx_type n = Array<LT>::get_size (frozen_len); |
5264
|
3121 |
|
3122 if (n != rhs.numel ()) |
4749
|
3123 { |
|
3124 (*current_liboctave_error_handler) |
|
3125 ("A(IDX-LIST) = X: X must be a scalar or size of X must equal number of elements indexed by IDX-LIST"); |
|
3126 |
|
3127 retval = 0; |
|
3128 } |
|
3129 else |
|
3130 { |
5052
|
3131 lhs.resize_and_fill (new_dims, rfv); |
|
3132 |
4749
|
3133 if (! final_lhs_dims.any_zero ()) |
|
3134 { |
5265
|
3135 n = Array<LT>::get_size (frozen_len); |
4749
|
3136 |
5275
|
3137 Array<octave_idx_type> result_idx (lhs_dims_len, 0); |
|
3138 |
|
3139 for (octave_idx_type i = 0; i < n; i++) |
4749
|
3140 { |
5275
|
3141 Array<octave_idx_type> elt_idx = get_elt_idx (idx, result_idx); |
4749
|
3142 |
|
3143 lhs.elem (elt_idx) = rhs.elem (i); |
|
3144 |
|
3145 increment_index (result_idx, frozen_len); |
|
3146 } |
|
3147 } |
|
3148 } |
|
3149 } |
4743
|
3150 } |
4517
|
3151 } |
4745
|
3152 |
5052
|
3153 if (retval != 0) |
|
3154 lhs.resize (final_lhs_dims); |
4517
|
3155 } |
|
3156 |
5052
|
3157 if (retval != 0) |
|
3158 lhs.chop_trailing_singletons (); |
4757
|
3159 |
4517
|
3160 lhs.clear_index (); |
|
3161 |
|
3162 return retval; |
|
3163 } |
|
3164 |
|
3165 template <class T> |
|
3166 void |
3933
|
3167 Array<T>::print_info (std::ostream& os, const std::string& prefix) const |
|
3168 { |
|
3169 os << prefix << "rep address: " << rep << "\n" |
|
3170 << prefix << "rep->len: " << rep->len << "\n" |
|
3171 << prefix << "rep->data: " << static_cast<void *> (rep->data) << "\n" |
|
3172 << prefix << "rep->count: " << rep->count << "\n"; |
4513
|
3173 |
|
3174 // 2D info: |
|
3175 // |
4657
|
3176 // << pefix << "rows: " << rows () << "\n" |
4513
|
3177 // << prefix << "cols: " << cols () << "\n"; |
3933
|
3178 } |
|
3179 |
237
|
3180 /* |
|
3181 ;;; Local Variables: *** |
|
3182 ;;; mode: C++ *** |
|
3183 ;;; End: *** |
|
3184 */ |